
Advanced Quantum Mechanics

Lecture by Hanno Sahlmann

Scriptum by Philipp Weber and Benedikt Tissot

Status: 8.2.2017

This document uses TikZ-Feynman (arXiv:1601.05437)

1



Contents

0 Overview 4
0.1 Recap of classical Quantum Mechanics . . . . . . . . . . . . . . . . . . . 4
0.2 Symmetries in QM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.3 Propagators, path-integrals, scattering . . . . . . . . . . . . . . . . . . . 5
0.4 QM with multiple particles . . . . . . . . . . . . . . . . . . . . . . . . . . 5
0.5 Relativistic QM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 QM Recap 7
1.1 Stochastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Hilbert spaces, operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Eigenvalues, eigenvectors, spectrum . . . . . . . . . . . . . . . . . . . . . 12
1.4 Principles of Quantum theory . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Further tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Generalized states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 Coupling to the EM-field . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Symmetries in Quantum Mechanics 22
2.1 Symmetries and unitary representations . . . . . . . . . . . . . . . . . . 22
2.2 Continuous symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Rotational symmetry SO(3) . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Spin j = n+ 1

2
, n ∈ N0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 General form of symmetries . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Time evolution, propagators, path integrals 37
3.1 Review of basic motions . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 The Feynman path integral . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Perturbation theory with Feynman diagrams . . . . . . . . . . . . . . . . 48

4 Scattering Theory 53
4.1 S-matrix, scattering amplitudes . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Lippman-Schwinger equation . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Scattering amplitude and scattering cross section . . . . . . . . . . . . . 59

5 Identical Particles 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 n identical particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Fermi- and Bose-Einstein statistics . . . . . . . . . . . . . . . . . . . . . 67
5.4 Fermi and Boson gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5 Fock space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Relativistic Quantum Mechanics 73
6.1 Short review of special relativity . . . . . . . . . . . . . . . . . . . . . . . 73

2



6.2 Some representations of P(3, 1) and O(3, 1) . . . . . . . . . . . . . . . . . 76
6.3 Klein-Gordon equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4 Dirac equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.5 Connection to QFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3



0 Overview

0.1 Recap of classical Quantum Mechanics

• Observables: Operators on Hilbert-spaces

– also elements of an algebra a

– in general: [â, b̂] 6= 0 (for two operators â and b̂)

• Spectra: Each observable a comes with a spectrum

spec(a) ⊂ R (0.1)

– Interpretation: Spectrum of an observable a are all possible values of a

• States: Give probability measure

ψ 7→ dP
(a)
ψ (0.2)

• In classical physics all this is true, but

dP (A) = a · dP (0.3)

where a is function in phase space and dP is probability measure on phase space

0.2 Symmetries in QM

Operations which leave probabilities invariant and respect time evolution are called
Symmetries.

• unitary or anti-unitary operators (see Wigner’s theorem)

• Representations (up to phase) of a symmetry group

• Consequences for spectra

• Continuous symmetries ↔ Lie-algebra of conserved quantities

V (t) = ek·t (0.4)

Operator V and k is element of a Lie-algebra

• Rotational- / Isospin-symmetry
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0.3 Propagators, path-integrals, scattering

• Propagators have the form of:

U(~x, ~x ′, t) = 〈~x ′|U(t)〉 ~x (0.5)

~x

~x′

• Can be written as path-integral

U(~x, ~x ′, t) =

∫
{~x : ~x (0)=~x ,~x (t)=~x (t)}

D x(.) e
∫
[~x (.)] (0.6)

~x

~x′

• Approximation: (Here sum over all different paths)

• Scattering:
〈
~k
∣∣∣U(−∞,∞)

∣∣∣~k′〉 =?

0.4 QM with multiple particles

• Tensor product

• Particle exchange as symmetry

• Identical particles

• Infinite many particles: Fock-space: F (h) = eh = C⊕ h⊕ h⊗ h⊕ . . .

0.5 Relativistic QM

QM with lorentz-group as symmetry-group

• Representations of lorentz-groups

• Evolution equation for scalar particles:

�ψ − m2

~2
ψ = 0 (0.7)

(Klein-Gordon-equation)
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• Evolution equation for massless spinors

σµ∂µψR = 0 ; σµ∂µψL = 0 (0.8)

(Veyl-equation)

• Evolution-equation for massive spinors

γµ∂µψ +m1ψ = 0 (0.9)

(Dirac-equation)

• Majorana fermions
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1 QM Recap

1.1 Stochastics

Most statements of QM are about probabilities.

Probability space: Space P , probability measure dP

•
∫
P dP = 1

•
∫
P ϕ dP ≥ 0 for f ≥ 0

Observables: (math.: random variables) Functions of fP → C

Examples:

• Fair dice: P = {1, 2, 3, 4, 5, 6} ∫
P
f dp =

1

6

6∑
i=1

f(i) (1.1)

• Particle in a box: P = [0, L]3, uniform dP∫
P
f dP =

1

L3

∫
[0,L]3

f d3x (1.2)

Expectation value: Probability space (P , dP ), observable f

〈f〉 :=
∫
P
f dP (1.3)

Distribution of observable: (P , dP ) given, then (f(P), f(dP )) is a new probability
space

〈g〉f(P) =

∫
g ◦ f dP (1.4)

Covariance and other moments:

Cov(f, g) = 〈fg〉 − 〈f〉〈g〉 (1.5)

Var(f) = Cov(f, f) (1.6)

Covariance measures failure of multiplicativity. Variance measures
”
spread“ the distribu-

tion of higher moments

〈fm〉 , 〈(f − 〈f〉)m〉 , m = 3, 4, . . . (1.7)
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Law of large numbers:
x1, x2, . . . : Independent identically distributed observables.
Let 〈xi〉 =: e, then make new probability space:

x : lim
n→∞

1

n
(x1 + x2 + · · ·+ xn) (1.8)

It holds that x = e almost surely (whatever that evs).
Important lesson: Expectation value ∼= average of repeated measurements.

Remarks:

• For classical physics:

– P : Phase space

– dP : State of the system

• Random variables ≡ observables → Can choose:

dP = f (p0, p) dP (1.9)

for some p0

• Sometimes expectation values are probabilities

〈χR〉 =
∫
R
dP = Prob (p ∈ R) (1.10)

R ⊆ P

1.2 Hilbert spaces, operators

Vector spaces are F

{
C

R

Scalar product: 〈◦, ◦〉 : v × v → F

• (conjugate) symmetric: 〈x, y〉 = 〈x, y〉

• Linearity: 〈x, y + λz〉 = 〈x, y〉+ λ〈x, z〉

• Positive definite: 〈x, x〉 ≥ 0 , 〈x, x〉 = 0⇒ x = 0

Norm: ||v|| =
√
〈v, v〉

CS-inequality: |〈x, y〉| ≤ ||x|| · ||y||
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Hilbert-space: F-vector space, together with scalar product, complete in ||.||-top

Examples:

• L2(R3, d3x) , 〈f, g〉 =
∫
R
f(x)g(x) d3x

• l2(C) =

{
square summable

cases
= 〈(cn), (dn)〉 =

∑∞
k=1 ckdk

• Cn , 〈x, y〉 =
∑n

k=1 xkyk

Hilbert spaces are classified by size of basis (aka. dimension). Same dimension evs
that the Hilbert-spaces are isomorphic (Here L2 is isomorphic to l2 but they are not
isomorphic to Cn)

Orthogonal-basis: Basis {bi} with 〈bi, bj〉 = δij

Bra-Ket: with v ∈ H as |v〉 (
”
Ket“) linear form (linear map to F for fixed w

v 7→ 〈w, v〉 (1.11)

denoted by 〈w| (
”
Bra“) then

〈w| (v) ≡ 〈w| (|v〉) ≡ 〈w|v〉 ≡ 〈w, v〉 (1.12)

Direct sum: Given some index set I, F-vector spaces Vi, i ∈ I then⊕
i∈I

vi =
{
(vi)i∈I |vi ∈ Vi, finitely many vi non-zero

}
(1.13)

because F-vector spaces. For dim (Vi) 〈∞ , |I|〈∞ holds

dim

(⊕
i

Vi

)
=
∑
i

(Vi) (1.14)

If Vi are Hilbert-spaces,
⊕

becomes Hilbert space via

〈(vi), (wi)〉⊕ =
∑
i

〈vi, wi〉Vi (1.15)

Example: C
n
⊕
C
m = Cn+m

c1...
cn


d1

...
dm

→


c1
...
cn
d1
...
dm


(1.16)
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Operators: Linear maps between vector (Hilbert-) spaces.

Examples:

• Cn → C
m , f(x) =Mx , M ∈M(m× n,C)

• Momentum operator

pk
~
i

∂

∂xk
on H = L2

(
R

3, d3x
)

(1.17)

Expectation values: Operators ≡ observables in QM. For A operator on H , ψ ∈ H

〈A〉ψ =
1

||ψ||
〈ψ,Aψ〉 (1.18)

is interpreted exactly the same as expectation value in stochastics. Also

Varψ (A) = 〈A2〉ψ − 〈A〉2ψ (1.19)

interpreted as width of distribution of observable A.

First: Nuissance unbounded operators

Bounded (continuous) operator: A : H1 → H2 bounded.

⇔ ∃c > 0 ||Av||2 ≤ c||v||1 ∀v ∈ H1 (1.20)

Abounded⇔ Acontinuous (1.21)

For ∞-dim H1 and H2 all operators are bounded:
Surprising: For ∞-dim. H-spaces there are unbounded operators.
Problem: Unbounded operators can not be defined on entire H-space. Operator A, with
dom(A), the domain of A.
Example: xi , pk , i, k = 1, 2, 3 unbounded on L2(R3, d3x)

Schwartz functions: S(R3): smooth, decaying quicker than any polynomical, same
derivatives
→ convenient dense domain for xi, pk
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Adjoint operator: Idea: 〈v, Aw〉 := 〈A†v, w〉.
More precisely: For A : H1 → H2 , dom(A) ⊂ H1 , dense

• dom(A†) = {w ∈ H2|∃z(w) ∈ H1 : 〈w,Av〉 = 〈z(w), v〉∀v ∈ dom(A)}

• A† := z(w)

Important cases:

• A† = A−1: Unitary operation

• dom(A†)〉dom(A) , A† |dom(A) = A: Symmetric operation

• dom(A†) = dom(A) : A† = A: Selfadjoint operation

Projectors: Given v, w ∈ H, how to approximate w by v?

λ ∈ C such that ||λv − w|| !
= min → unique solution for λ. Pv(w) = λv is called

projection of w onto the subspace spanned by v

Pv(w) =
〈v, w〉
||v||2︸ ︷︷ ︸
λ

v =
1

||v||2
|v〉 〈v|w〉 (1.22)

Linear operation generalizes to projection onto subspace h ⊂ H:

v ∈ h such that ||v − w|| !
= min (1.23)

For {bi} ONB of h:

Ph (◦) =
∑
i

〈bi, ◦〉bi =
∑
i

|bi〉 〈bi| (1.24)

One finds:

P 2
h =

∑
ij

|bi〉 〈bi|bj〉︸ ︷︷ ︸
δij

〈bj| =
∑
i

|bi〉 〈bi| = Ph (1.25)

And also:

P †
h = Ph (1.26)

⇒ Ph is uniform.
Projections correspond to yes/no questions (

”
proposition“). Sometimes useful: If {b− i}

is ONB for entire H,1H = PH =
∑

i |bi〉 〈bi|. Can use this to write formally:

A = 1HA1H =
∑
kl

|bk〉 〈bk|A|bl〉 〈bl| =
∑
kl

〈bk|Abl〉 |bk〉 〈bl| (1.27)
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Uncertainty relations: A,B on H , A† = A , B† = B , ψ ∈ H , ||ψ|| = 1

| 〈AB〉ψ |
2 = | 〈Aψ|Bψ〉 |2 ≤

〈
A2
〉
ψ

〈
B2
〉
ψ

(1.28)

Re
(
〈AB〉ψ

)
=

1

2
〈AB +BA〉ψ :=

1

2
[A,B]+ (1.29)

Im
(
〈AB〉ψ

)
=

1

2i
〈[A,B]〉ψ (1.30)

So
〈
A2
〉
ψ

〈
B2
〉
ψ
≥ 1

4

(〈
[A,B]+

〉2
ψ
− 〈[A,B]〉2ψ

)
≥ 1

4

∣∣∣〈[A,B]〉ψ
∣∣∣2 (1.31)

Replace A 7→ A− 〈A〉ψ , B 7→ B − 〈B〉ψ (1.32)

⇒ Var(A)ψ · Var(B)ψ ≥
1

4
| 〈[A,B]〉ψ |

2 (1.33)

1.3 Eigenvalues, eigenvectors, spectrum

Eigenvalue, eigenvector: A operation on H. If ψ ∈ H, λ ∈ C solve

Aψ = λψ (1.34)

then λ is called
”
eigenvalue“ and ψ is called

”
eigenvector“.

• {eigenvalues of A} =: specpp (A)

• Hλ = {ψ ∈ H |Aψ = λψ}

Propertics: A operation on H , λ eigenvalue of A, then

• A = A† ⇒ λ ∈ R

• A = A−1 ⇒ λ ∈ C

• A2 = A⇒ λ ∈ {0 , 1}

• A2 = 1⇒ λ {−1 , +1}

• A invertible ⇒ λ−1 eigenvalue of A−1

For A = A† or A = A−1 : Hλ⊥Hλ′ for λ 6= λ′

Assumption: A operator such that

H =
⊕

λ∈specpp(A)

Hλ (1.35)

then there is ONB of eigenvectors

A |λ, iλ〉 = λ |λ, iλ〉
〈λ, iλ|λ′, i′λ′〉 = δλλ′

}
λ ∈ specpp(A) , iλ ∈ {1, 2, . . . , dim(Hλ)} (1.36)
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Now rewrite expectation value

〈A〉ψ =
1

||ψ||2
〈ψ|Aψ〉 = 1

||ψ||2
∑
λ,iλ

∑
λ′,i′

λ′

〈ψ|λ, iλ〉 〈λ, iλ|A|λ′, i′λ′〉︸ ︷︷ ︸
λδλλ′δiλi

′
λ′

= (1.37)

∑
λ,iλ

λ
| 〈ψ|λ, iλ〉 |2

||ψ||2
=:

∑
λ∈specpp(A)

λPψ(λ) (1.38)

with

Pψ(λ) =
∑
iλ

| 〈ψ|λ, iλ〉 |
||ψ||2

= 〈PHλ
〉ψ (1.39)

then Pψ(λ) is probability measure on specpp(A) with specpp(A) ≥ 0.

∑
λ

Pψ(λ) =

〈∑
λ

PHλ

〉
ψ

= 〈1H〉ψ = 1 (1.40)

‖PHλ
‖

‖ψ‖2
= Pψ(λ) ≥ 0 (1.41)

So after all it’s the stochastic expectation value.

〈A〉ψ =
∑

λ∈specpp(A)

λPψ(λ) (1.42)

Get rid of assumption → generalize notion of spectrum.
Spectral calculus: For A fulfilling an (I.20) (whatever equ. this is. . . ), f continuous
bounded on specpp(A) define f(A) on H:

f(A) |λ, iλ〉 := f(λ) |λ, iλ〉 (1.43)

Remark: 〈f(A)〉ψ =
∑

λ f(λ)Pψ(λ)
So functions of A behave like classical random variables on same probability space.

Spectrum:

res(A) = {λ ∈ C , (A− λ1) has bounded inverse} (1.44)

spec(A) = C \res(A) (1.45)

Obviously specpp(A) ⊆ spec(A) but sometimes no equality!
Example: Position operator xk with k = 1, 2, 3, . . . :

1
xk−λ bounded for λ ∈ C /R, unbounded for λ ∈ R, so spec(xk) = R.
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Spectral theorem: (for self-adjoint, bounded operators)
For A s.a. bounded operator on H:
• measures dµ on R (concentrated on spec(A))

• unitary map U , N ∈ N ∪∞:

U : H →
N⊕
i=1

L2 (R, dµi) (1.46)

such that
(
UAU−1

) N⊕
i=1

ψi (λ) =
N⊕
i=1

λψi (λ) (1.47)

Remarks:

• for spec(A) = specpp(A): dµi(λ) =
∑

α∈spec(A) δ(λ, α) dλ

U |α, iα〉 =
⊕N

j=1 δj,iαδλ,α

• x on L2(R, dx) : U = 1 , N = 1 , dµ = dx

• p on L2(R, dx) : U = F , N = 1 , dµ = dx

• xk on L2(R3 d3x) : N =∞
For definiteness : k = 3, x3 = t
Pick ONB {bi(x, y)} of L2(R2, dx dy)
→ ψ ∈ L2(R2, dx dy dz) : ψ(x, y, z) =

∑
i(x, y)ψi(z)

with ψi(z)
∫
dx dybi(x, y)ψ(x, b, z)

then Uψ =
⊕∞

i=1 ψi(z) ∈ ⊗iL2(R, dz)

Spectral calculus: A→ f(A) , λψi(λ)→ f(λ)ψi(λ)(
Uf(A)U−1

)⊕
ψi(λ) =

⊕
i

f(λ)ψi(λ) (1.48)

Expectation values: A as above, ψ ∈ H

〈f(A)〉ψ =
〈
Uf(A)U−1

〉
Uψ

(1.49)

=

∫
spec(A)

f(λ) dPψ(λ) (1.50)

with dPψ(λ) =
∑N

i=1 |ψi〉
2 (λ) 1

||ψ||2 dµi(λ)

Remark: Example (1) continued dPψ(x) =
|ψ|2(x)
||ψ||2 dx

Control:

dPψ(z) =
∑
i

〈ψ|bi〉L2(R2) · 〈bi|ψ〉L2(R2)

1

||ψ||2
(z) dz (1.51)

= 〈ψ|ψ〉L2(R2) (z)
1

||ψ||2
dz =

1

||ψ||2

(∫
dx

∫
dy|ψ|2(x, y, z) dz

)
(1.52)
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Theorem: For A = A† , B = B† with [A,B] = 0 there is unitary U : H →⊕
i L2(R, dµi) such that

(UAU−1)
⊕
i

ψi(λ) =
⊕
i

fA(λ)ψi(λ) (1.53)

(UBU−1)
⊕
i

ψi(λ) =
⊕
i

fB(λ)ψi(λ) (1.54)

(1.55)

If [A,B] 6= 0, it is impossible to find such a decomposition.

1.4 Principles of Quantum theory

1. States: described by vectors in Hilbert-spaces.
Note: v ∈ H and λv, λ ∈ C / {0} describe the same physical state!

2. Observables: represented by s.a. operators.

3. Predictions:

• Possible values of A in a measurement are given by spec(A)

• For a system in state ψ, probability distributions of measurements by dPψ(λ)

4. Time evolution: Linear Map H → H , v 7→ Tv. At least two cases:

• unitary time evolution:

Tv = U(t, t0) with U(t, t0)
† = U−1(t, t0) (1.56)

U is obtained a solution of

H(t)U(t, t0) = i~
∂

∂t
U(t, t0) , U(t, t0) = 1 (1.57)

• (strong) measurement: Tv = Pv for some projector P :
For measuring

”
A ∈M ⊂ spec(A)“

P = χµ(A)

Note: More general description of measurements exist (
”
weak measurement“)
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Remarks:

• Nontrivial part of (2.) is association

θ︸︷︷︸
classical

↔ θ̂︸︷︷︸
quantum

(1.58)

”
→“: strictly speaking guessing

”
←“: well defined problem (

”
classical problem“)

• physical states are in 1-1 correspondence to rays

H ⊃ [ψ] = {λψ|λ ∈ C / {0}} (1.59)

1.5 Further tools

Relation between selfadjoint ↔ unitary : For A = A†

can show from (26) :

(f(A))† = f̄(A) (1.60)

f1(A) · f2(A) = (f1 · f2)(A) (1.61)

Apply (31) to f(A) = eikA , k ∈ R: (
eikA

)†
= e−ekA (1.62)

and (32) for f1 = f , f2 = f̄

e−ikAeikA = 1H(A) = 1H (1.63)

So eikA is unitary. For Uk = eikA

Uk · Uk′ = Uk+k′ and lim
ε→0

Uk+εψ = Ukψ (1.64)

Map R 3 k 7→ Uk unitary, U0 = 1 with (1.64): One parameter unitary group (1PUG)

Stone’s theorem : Every 1PUG Uk is of the form

Uk = eikA (1.65)

for some s.a. operator A. Can find A by differentiating

1

i

d

dk

∣∣∣∣∣
k=0

Ukψ = Aψ (1.66)

A is called generator of Uk
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Examples

• Time independent Hamiltonian H

Ut := e
−itH

~ (1.67)

is 1PUG. Then:

i~
d

dt
Ut = HUt (1.68)

(1.69)

⇒ Ut ≡ U(t, 0) is the time evolution operator.

• Translation: (
T~δψ

)
(~x) := ψ(~x− ~δ) (1.70)

Then:

T~δ1T~δ2 = T~δ1+~δ2 ,
〈
T~δψ

∣∣Φ〉 = 〈ψ∣∣T−~δΦ〉 (1.71)

So T~δ is unitary group (3 separate 1PUG). Can also check continuity. Generator:

1

i

d

dδj
T~δψ(x)

∣∣∣∣
~δ=0

=
1

i
(−1)dx

j

ψ
(~x) = −1

~
pjψ(~x) (1.72)

Thus:

T~δ = exp

(
− i
~
~δ · ~p

)
(1.73)

Tensor product: For two vector spaces V and W : V ⊗W .
Consists of formal linear combinations

x =
∑
i

λi(vi, wi) λi ∈ F , vi ∈ V,wi ∈ W (1.74)

subject to rules:

• (v1 + v2, w) = (v1, w) + (v2, w)

• (v, w1 + w2) = (v, w1) + (v, w2)

• λ(v, w) = (λv, w) = (v, λw), λ ∈ F
also write (v, w) ≡ v ⊗ w. If dimV,W <∞:

dim (V ⊗W ) = dim(V ) · dim(W ) (1.75)

For basis {vi} of V , {wi} of W then {vi ⊗ wk} is basis of V ⊗W .
If V,W are Hilbert-spaces then we can make V ⊗W a Hilbert-space via

〈v1 ⊗ w1|v2 ⊗ w2〉⊗ = 〈v1|v2〉V · 〈w1|w2〉W (1.76)

A operator on V
B operator on W

}
→ A⊗B on V ⊗W by A⊗B(v ⊗ w) := (Av)⊗ (Bw) (1.77)
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Example:

• System 1: {vi} ONB of V with H1vi = E1
i vi

System 2: {wj} ONB of W with H2wj = E2
jwj

Combine into one system

– non-interacting: H = H1 ⊗ 1W + 1V ⊗H2 Hamiltonian of combined system

– interacting: H = H1 ⊗ 1W + 1V ⊗H2 +HI

HI : interaction, HI =
∑

k Ak ⊗Bk ·
(
Coulomb ∼ 1

|~x1⊗1−1⊗~x2|

)
• Two spinless particles (special case of above) (distinguishable)

H = L2(R3, d3x)⊗ L2(R3, d3x) (1.78)

Useful fact:

L2(Rm, dmx)⊗ L2(Rn, dnx) ' L2(Rm+n, dm+nx) (1.79)

Therefore can describe the two particle systems by wave-functions
ψ~x1, ~x2 on R6. (Coulomb: ∼ 1

|~x1−~x2|)
So note: Interpretation of

”
⊗“:

– Two systems with Hilbert-spaces V,W from joint system with states of com-
bined system in V ⊗W .

– Mathematical ⊕ and ⊗ work almost like the multiplication and addition of
numbers or functions with F,∅ as neutral elements. (ex: V ⊗ F = V )

• Electron with spin:

H = L2(R3, d3x)⊗C2 (1.80)

Note that

H = L2(R3)⊗ (C⊕C) (1.81)

= L2(R3)⊗C⊕L2(R3) (1.82)

= L2(R3)⊗ L(R3) (1.83)

Therefore can describe the electron by 2-component wave function

ψ~x ≡
(
ψ1(~x)
ψ2(~x)

)
(1.84)

1.6 Generalized states

Consider statistical mixture of quantum states

H 3 ψi, with probability pi (1.85)
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Described by density operator (or density matrix)

ρ =
∑
j

pj

‖ψj‖2
|ψj〉〈ψj| (1.86)

Indeed for {bi} an ONB, A an observable

〈A〉ρ := tr(ρA) :=
∑
i

〈bi| ρA |bi〉 =
∑
j

pj 〈A〉ψj
(1.87)

Must have
∑ pj

‖Ψj‖ absolutely convergent, A bounded for it to make sence. Operators

of form 1.86 have

tr(ρ) = 1, ρ > 0 and spec(ρ) = specpp(ρ). (1.88)

Vice versa, any operator satisfieng (1.88) can be written as (1.86).
Time evolution:

ρ(t) = U(t, t0)ρU(t, t0)
−1 (1.89)

ρ′(t) =
PρP

tr(ρP )
(1.90)

Important special case:

ρ =
1

‖Ψ‖
|Ψ〉〈Ψ| (1.91)

Then ρ is equivalent in all aspects to Ψ ∈ H. Often one calls states of form (1.91)
“pure” and of form (1.86) “mixed”.

pure

ρ1

ρ2

mixed

Figure 1: Sketch of pure and mixed states

However: For any ρ on H there is H′ in which ρ has form (1.91). Better Definition:
Consider:

χ = c1ρ1 + c2ρ2 with c1, c2 ≥ 0 and c1 + c2 = 1 (1.92)

where ρ1 and ρ2 are density matrices. Then χ again is a density matrix. ⇒ space of
states S is a convex space. Now given χ ∈ S if ∃ρ1, ρ2 ∈ S∃c1, c2 > 0 according to (1.92)
the state is “mixed” else the state is “pure” in a fundamental distinction.
Slight generalization:
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Definition 1.1. Given a C−Vectorspace A with a, b ∈ A and λ ∈ C. A ∗-algebra has

1. Multiplication which is associative, and distributive: (λa)b = λ(ab)

2. Map ∗, s.t. ∗2 = IdA, (ab)
∗ = b∗a∗ and (λa)∗ = λ̄a∗

Example 1.1. Heisenberg algebra, generated by abstract objects x, p, 1 with:

[x, p] = i1, x∗ = x, p∗ = p, 1∗ = 1, 1x = x and 1p = p

State on ∗-algebra: For A a ∗-algebra with unit, lineat map ω : A→ C with:

ω(1) = 1, ω(a∗) = ¯ω(a), ω(a∗a) ≥ 0∀a ∈ A

Definition 1.2. A representation of A is a linear map π : A→ H (Hilbert space) with

1. π(ab) = π(a)π(b)

2. π(a)∗ = π(a)†

Theorem 1.2. (GNS construction) Given a state ω on an algebra A there is a represen-
tation πω on Hω and a Ψω ∈ Hω with ω(a) = 〈πω(a)〉Ψω

1.7 Coupling to the EM-field

A particle with charge q in external EM field ~E(~x, t), ~B(~x, t). Classically:

m~̈x = q ~E(~x, t) +
q

c
~̇x× ~B(~x, t)

For
∥∥∥~̇x∥∥∥ << c we get the Lagrange function

L =
1

2
m~̇x2 +

q

c
~̇x ~A− qΦ (1.93)

with ~B = ∇× ~A, ~E = −∇Φ− ∂

∂t

~A

c
. (1.94)

And the gauge trafos:

~A→ ~A′ = ~A+∇Λ and Φ→ Φ′ = Φ− Λ̇

c
(1.95)

Change L only by d
dt
Λ(~x(t), t).
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Canonical formulation

~p = ~pkin +
q

c
~A(~x, t) (~pkin = m~̇x)

H =
1

2m
(~p− q

c
~A)2 + qΦ (1.96)

Quantisation on L2(R3, d3x) via ~̂p = ~
i
∇ and ~̂x = ~x.

Remark. • Kinematic momentum is non-commutative:
[
pkinj , pkink

]
= i~q

c

∑
l εjklB

l(~x)

• Aharonov-Bohm effect: Due to coupling to ~A interference effect although ~B = 0 in
region accessible to particle.

B 6= 0

B = 0

A 6= 0

x

I(x)

Figure 2: Aharonov Bohm effect

• Gauge transformations: if one changes ~A one also needs to change

the wave function

HΨ = i~
∂Ψ

∂t
⇔ H ′Ψ′ = i~

∂Ψ′

∂t

with Λ the generator of the gauge trafo

H ′ =
1

2m

(
~p− q

c
~A′
)2

+ qΦ′ and Ψ′(~x, t) = exp

(
iqΛ(~x, t)

~c

)
Ψ(~x, t) (1.97)

Only the expectation values are gauge invariant quantities (ex. ~x, ~pkin)

Pauli equation

Charged particles with spin. This results in a magnetic moment

~µ = γ~S = g
q

2m
~S. (1.98)
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Where γ is the gyro magnetic ratio and g the g-factor. The energy in the magnetic field is
given as U = −1

c
~µ ~B and gives an additional term in H. Plugging this in the Schrdinger

equation yields

1

2m

[(
~p− q

c
~A
)2
− g q

c
~S ~B

]
Ψ+ qΦΨ = i~

∂

∂t
Ψ. (1.99)

This is also known as the Pauli equation. It will be shown that for an electron e− one
must have g ≈ 2 as a consequence of the Lorentz-invariance.

2 Symmetries in Quantum Mechanics

Consideration of symmetries are a powerful tool.

• Continuous symmetry ↔ conservation laws

• Symmetries give degeneracies

• symmetries restrict (atomic) transitions

• way symmetries operate in QM connected to fundamental properties of matter
(spin, boson/fermions)

2.1 Symmetries and unitary representations

Consider properties to come to precise definition!

1. Symmetries are operators on (or changes of description of) physical systems, hence
in QM, symmetry g:

πS(g) : States→ states, [v]→ πS(g)([v]) ≡ [v′] (2.1)

πσ(g) : Obs.→ obs., A→ πσ(g)(A) = A′ (2.2)

2. Symmetries should leave predictions invariant!

|〈v1|Av2〉|2 = |〈v′1|Av′2〉|2 for v′i ∈ πS(g)([vi]) (2.3)

3. Symmetries should respect time evolution:

πσ(g)(UtAU
−1
t ) = Utπσ(g)(A)U

−1
t (2.4)

where Ut = U(t, t0) is the time evolution operator.

4. Symmetries:

• can be concatenated: g1, g2 are symmetries so is g1g2
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• can not destroy information, so they must be invertible, and inverse should
also be a symmetry

• trivial transition (do nothing) is a symmetry

If we make the (reasonable) assumption: concatenation of symmetries is associative, we
can summarize: Symmetries form a group

Definition 2.1. A representation of a group G on a space S is an assignment G 3 g →
πS(g), πS(g) : S → S with

πS(g1) ◦ πS(g2) = πS(g1g2) (2.5)

πS(1) = Id (2.6)

Then:

Definition 2.2. Symmetry of a QM system (H, O,H) is a group G, with representations
on S and σ that leave H invariant.

Remark. • From ((2.5), f) follows

π(g−1) = π(g)−1 (2.7)

• for a representation π : G→ invertible lin. operator on V where V : a vector space:
(2.5) ⇒ (2.6)

Example 2.1. Translation:

• group: G = (R3,+)

• πS(~δ)[Ψ] = [T~δΨ]

• one can also define: πσ(~δ)(A) ≡ T~δAT
−1
~δ

Then, because of T~δT~δ′ = T~δ+~δ′ , πS, πσ fulfill (2.5). Moreover, for H = ~p2

2m
one can check

πσ(~δ)(H) = H. Finally one can check that (2.3) is fulfilled. Translations are symmetries
of the free particle.

Definition 2.3. Unitary representation of a group is a representation where all π(g) g ∈
G are unitary operators.

Observation: π is unitary representation of G on H of (H, O,H), with π(g)Hπ(g)−1 =
H. Then get symmetry via

πS(g)[v] ≡ [π(g)v] and πo(g)(A) ≡ π(g)Aπ(g)−1 (2.8)
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Example 2.2. • Rotations: SO(3) = {M ∈M(3× 3,R), det(M) = 1} Multiplica-
tion: Matrix mult. Representation of L2(R, d3x) via:

(π(R)Ψ) (~x) ≡ Ψ(R−1~x) (2.9)

check (2.5):

(π(R′)π(R)Ψ) (~x) = Ψ
(
R−1R′−1~x

)
= (π(R′R)Ψ) (~x)

Is it unitary?

〈ϕ|π(R)Ψ〉 =
∫
R3

ϕ̄(~x)Ψ(R−1~x︸ ︷︷ ︸
=~x′

)d3x =

∫
R3

ϕ̄(R~x′)Ψ(~x′)d3x′

But: ∂xa

∂x′
= Ra

b with det(R) = 1 thus: 〈ϕ|π(R)Ψ〉 = 〈π(R−1)ϕ|Ψ〉, so

π(R)† = π(R†) = π(R)−1.

• Parity: Spatial reflections at origin

P~x = −1~x = −~x (2.10)

Together with 1 form a group called S2. Unitary action on L2(R3, d3x) via

(PΨ)(~x) = Ψ(−~x) (2.11)

• Particle exchange: Our particle H-space H1 = L2(R3, d3x) N distinguishable
particles:

HN = H1 ⊗ · · · ⊗ H1︸ ︷︷ ︸
N times

(2.12)

SN : Group of permutations of N things. Unitary action on HN

π(σ)v1 ⊗ · · · ⊗ vN = vσ(1) ⊗ · · · ⊗ vσ(N) (2.13)

Definition 2.4. (π,H) representation of G, H1 proper subspace!

1. H1 ⊂ H invariant subspace :⇔ π(G)H1 ⊆ H1

2. (H, π) irreducible :⇔ @ nontrivial ( 6= ∅, 6= H) invariant subspace H1 ⊂ H

Lemma 2.3. Complete reducibility: If we have

• unitary representation of G (π,H)

• H1 ⊂ H invariant

• H = H1 ⊕H⊥
1
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then H⊥
1 is invariant

Remark. irreducible unitary representations are the building blocks of general unitary
representations.

Example 2.4. • L2(R3, d3x) 3 Ψ(~x) ≡ Ψ(|~x|) such Ψ span a 1-dim. sub-rep of
rotation rep (2.9)

• Totally (anti-)symmetric states in HN (2.12) gives two different sub-reps. of (SN , π)
(2.13)

• Hydrogen |nlm〉 : Hln = span|n, l,m〉 : m ∈ {−l,−l + 1 · · · ,+l} gives 2l + 1 dim
subrep. more generally: for fixed j

|j,m〉m ∈ {−j,−j + 1, · · · j}
J2|j,m〉~2j(j + 1)|j,m〉

J3|j,m〉 = ~m|j,m〉

form an irred. rep. of the rotation group SO(3).

Because π(g)Hπ(g)−1 = H, π(g) leaves eigenspaces of H invariant.

Symmetries and eigenspaces:

(πH) rep of G assume:

• π(g)Hπ(g−1) = H∀g ∈ G

• Hλ ⊂ H eigenspan of H with eigenvalue λ

Then for v ∈ Hλ

Hπ(g)v = π(g)Hπ(g)−1π(g)v (2.14)

= π(g)Hv = λπ(g)v (2.15)

So H1 is invariant subspace. Two cases:

1. (π|Hλ
,Hλ) is irreducible: Symmetry explains degeneracies.

2. (π|Hλ
,Hλ) is reducible: accidental degeneracies

Example 2.5. Tut.: 3D H.O. Symmetric under rotations (O(3))
This symmetry does not explain degeneracy.
Accidental or larger symmetry group?
→ U(3) symmetry induced from ai 7→

∑
j Uijaj , i ∈ 1, 2, 3

for U ∈ U(3)
Example 2.6. Isospin
Another example for postulating symmetries based on degeneracy. Proton and neutron
(+ anti-particles)

25



• ∼ same mass

• ∼ same resonances

• ∼ same strong interaction

Heisenberg + Wigner: Hamiltonian has isospin symmetry
Ground state is 2-fold degenerate, spanned by

|p〉 = |↑〉 |n〉 = |↓〉 (I =
1

2
, I3 = ±

1

2
) (2.16)

Can see with mesons, too:∣∣π+
〉
,
∣∣π0
〉
,
∣∣π−〉 =̂ |1, 1〉 , |1, 0〉 |1,−1〉 (2.17)

for isospin states |I, I3〉 analogous to |j, j2〉 of angular momentum. Assumption of inter-
action Hamiltonian symmetric under this symmetry leads to prediction (Tut.).
Gal-hamm: Even bigger symmetry?

I

I3
n p

Σ−Σ0
1ΛΣ+

Ξ− Ξ+

Figure 3: Isospin sketch

Multipletts correspond to irreducible representations of SU(3)
→ (eventually) Quark model

2.2 Continuous symmetries

When symmetry group is smoothly parameterized, we speak of a continuous symmetry.

Example 2.7. Group of translations
(
R

3,+
)
acting via T~g on L2(R3, d3x). Had seen:

T~g = e−
i
~ ~p·~g (2.18)

If T~g give rise to a symmetry, must leave

H = e−
i
~ ~p·~gHe+

i
~ ~p·~g (2.19)

26



Differentiate with respect to δk at ~g = 0: k = 1, 2, 3

0 = − i
~
pkH +

i

~
Hpk ⇔ [H, pk] (2.20)

So we have shown that ~p is conserved. Holds more generally.

Principle 2.8. generators of continuous symmetries are conserved
→ make this more precise:
Matrix-Lie-Group Subgroups of GL(n,F), that has smooth parametrization around 1,
i.e., ∃ map Rm ⊃ V 7→ G such that:

g : (t1, . . . tm) 7→ g(t1, . . . tm) ∈ G (2.21)

• 1-1 map between V and neighbourhood g(V) of 1

• smooth

Remark. • It follows that it has smooth parametrization everywhere

• m =: dim(G)

g(V)

g(α(t))

1

R
d

V

α(t)

g(·)

Figure 4: Lie-Group and Lie-Algebra

Each such group comes with a

Definition 2.5. Matrix-Lie-Algebra: Let

A =

{
d

dt

∣∣∣∣
t=0

g (α(t))

∣∣∣∣α(t) curve through V with g (α(0)) = 1

}
(2.22)

• is a R-vectorspace with basis
{
∂
∂t

∣∣
1
g (t1, · · · tm) , i = 1, 2, · · ·m

}
• becomes an algebra with product given by commutator:

a, b ∈ A⇒ [a, b] ∈ A (2.23)
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For h ∈ G , g (α(t)) ≡ g(t) curve as above: hg(t)h−1 again curve through 1 and

∂

∂t

∣∣∣∣
t=0

hg(t)h−1 = hġ(0)h−1 ∈ A∀h ∈ G (2.24)

Now I let h (t) be a curve in G, and h(h) = 1 then

d

dt

∣∣∣∣
t=0

h(t)~̇g(0)h(t)−1 =
[
ḣ(0), ġ(0)

]
(2.25)

because ( using h(0) = 1 we get) 0 = d
dt
|t=0h(t)h(t)

−1 = ḣ(0) + ˙h−1(0). A is a vector
space. So

d

dt

∣∣∣∣
t=0

Λ(t) = lim
ε→0

1

ε
Λ(ε)− 1

ε
ġ(0) ∈ A with Λ(t) = h(t)~̇g(0)h(t)−1

This algebra is called then Lie-Algebra of G.
The miracle: Can construct G from A up to global structure: For G connected matrix
Lie Group

G = {ea, a ∈ A} (2.26)

and then product of G is completely encoded in [., .] on A:

ea · eb = ec with ea =
∞∑
n=0

1

n!
an (2.27)

and

c = a+ b+
1

2
[a, b] +

1

12
([a, [a, b]] + [b, [b, a]]) + higher orders (2.28)

(Baker, Campbell, Hausdorff)

Definition 2.6. Representations of a (matrix) Lie-algebra A are maps π : A→ linear
operators on V with π([a, b]) = [π(a), π(b)]

For a connected G: rep. Π of G → rep π of A.

π(ġ(0)) :=
d

dt
|t=0Π(g(t)) (2.29)

For simply connected A we have ⇐, too

Π(ea) := eπ(a) with a ∈ A (2.30)

Now we can make the principles more precise.
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Symmetries and conservation laws

Lie group A as symmetry group⇒ π(A) is a commutator algebra of conserved quantities:

0 =
d

dt
|t=0Π(e

at)HΠ(e−at) = π(a)tH −Hπ(a)t = [π(a), H]

Remark. If Π is unitary then π must be skew-adjoint π(a)† = −π(a). Physicists call the
self-adjoint −iπ(a) the generator.

2.3 Rotational symmetry SO(3)

Consider rotations around z:

g(t) =

 cos(t) sin(t) 0
− sin(t) cos(t) 0

0 0 1

 which is a curve through 13×3.

With the Lie-algebra element (a3)ab := (ġ(0))ab =

 0 1 0
−1 0 0
0 0 0


ab

= ε3ab. We can do this

analogous for x and y and get (ai)ab = εiab. With this we can calculate

[ai, aj] = −
∑
k

εijkak (2.31)

In the representation on wave functions:

(π(a3)Ψ) (~x) =
d

dt
|t=0 (π(g(t))Ψ) (~x) =

d

dt
|t=0Ψ

cos t − sin t 0
sin t cos t 0
0 0 1

 ~x


=

(
∂Ψ

∂x1

)
(−x2) +

(
∂Ψ

∂x2

)
x1 =

i

~
(
x1p2 − x2p1

)
Ψ =

i

~
L3Ψ(~x)

where ~L = ~x× ~p is the angular momentum. In general we find

π(ak) =
i

~
Lk. (2.32)

This is indeed a representation, as

[π(ak), π(al)] =
i

~
[
Lk, Ll

]
= − 1

~2
∑
m

i~εklmLm =
∑
m

−εlkmπ(am) = π([ak, al])

conforms to (2.31). Made use of the algebra of the angular momentum. The generators:

Lk =
~
i
π(ak) fulfill the well known (2.33)[

Lk, Ll
]
= i~

∑
m

εlkmL
m (2.34)
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Remark. • The Lie algebra SO(3) is given y the span of ai with the commutator
(2.31) as product.

• The Casimir of SO(3): Let Lk as in (2.32) for some rep. π. We can form

~L2 =
∑
i

LiLi then
[
La, ~L2

]
= · · · = 0 (2.35)

Thus eigenspaces of ~L2 are invariant subspaces.

Irreducible representation of SO(3)

Theorem 2.9. Let (H, π) be a irred. rep. of SO(3), then there is a

j ∈ N
2
(=

{
0,

1

2
, 1,

3

2
, · · ·

}
) and ONB |j,m〉 ,m ∈ {−j,−j + 1, · · · , j} (2.36)

of H with L3 |j,m〉 = ~m |j,m〉 and ~L2 |j,m〉 = ~2j(j + 1) |j,m〉 (2.37)

Proof. • ~L2 must be proportional to 1, for π to be irreproducible.

• ~L2 positive
Together: ~L2 = ~2λ(λ+ 1)1H with λ ∈ R0,+

• Ladder operators

L± := L1 ± iL2 (2.38)

As L3Ψ = ~mΨ,m ∈ R, it follows that

L3L±Ψ = ~(m± 1)Ψ and ‖L±Ψ‖2 = ~(j(j + 1)−m(m± 1))‖Ψ‖2 (2.39)

• Where the positivity of “‖·‖” gives (2.35) and (2.36)

This is the classification of all irred. reps of SO(3). (Similar for a general Lie algebra)

Addition of angular momenta

For a general π, also Jk = ~
i
π(ak). Given (π,H) rep. of SO(3):

1. Pick eigenstate |j,m〉 ∈ H of ~J2 and J3

2. Hit it with ladder operators to obtain basis of sub-rep. (irreducible) (Hj, π|Hj
)

3. Repeat for H′ = H⊥
j
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With this obtain the decomposition:

H = ⊕j∈N /2

(
⊕jm=1Hj

)
(2.40)

Now we do this for tensor products: (H(k), π(k))→ H = ⊗kH(k):

~Jtot :=
∑
k

~J(k), ~J(k) = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
(k−1)-times

~J(k) ⊗ 1⊗ · · · ⊗ 1 (2.41)

Since ⊗,⊕ are distributive, associative it suffices to consider:

~Jtot = ~J (1) + ~J (2) = ~J1 ⊗ 1+1⊗ ~J2 with ~Jk := −i~πjk(~a) on Hk (2.42)

H = Hj1 ⊗Hj2 , ~Jk := i~πjk(~a) on Hjk (2.43)

~J tot := ~J (2) + ~J (2) = ~J1 ⊗ 1+ 1⊗ ~J2 (2.44)

~J tot from representation of so(3):[
J tot,a, J tot,b

]
=
[
Ja1 , J

b
1

]
⊗ 1+ 1⊗

[
Ja2 , J

b
2

]
(2.45)

= i~
∑
c

εabc (J
c
1 ⊗ 1+ 1⊗ J c2) (2.46)

= i~
∑
c

εabcJ
tot,c (2.47)

This works the same way for any to representations of any Lie-algebra. Hence can
decompose H into irreducibles as in eq. (2.40). Let:

|m1,m2〉 := |j1,m1〉 ⊗ |j2,m2〉 (2.48)

this is ONB of H. Look for another ONB |j,m〉 such that(
~J tot
)2
|j,m〉 = ~2j(j + 1) |j,m〉 , jtot,3 |j,m〉 = m~ |j,m〉 (2.49)

Observe:

J3
tot |m1,m2〉 = ~(m1 +m2) |m1,m2〉 (2.50)

Let:

• m(j): # of j-irreducibles as in eq (2.40)

• n′(m): degeneracy of J tot,3 eigenvalue
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Then

n′(m) =
∑
j≥|m|

k(j) (2.51)

n′(m)− n′(m+ 1) =

(∑
j≥m

−
∑

j≥m+1

)
n(j) = n(m) (2.52)

Need to find n′(m). For this, consider eq (2.50), make diagram:

n(m) =

{
1 for m ∈ {j1 + j2, j1 + j2 − 1, · · · , |j1 − j2|}
0 otherwise

(2.53)

Let:

Hj1 ⊗Hj2 =

j1+j2⊕
k=|j1−j2|

Hk (2.54)

To find Basis change, start with |m1 = j1,m2 = j2〉 and use J tot,1
− := J tot,1 − iJ tot,2 and

so down to get j1 + j2 rep.

Remark. Useful formulars for ireps of so(3):

|j,m〉 =
[

(j +m)!

(2j)!(j −m)!

] 1
2

(J−)
j−m |j, j〉 (2.55)

=

[
(j −m)!

(2j)!(j +m)!

] 1
2

(J+)
j+m |j,−j〉 (2.56)

In the |j,m〉 basis, the J ’s are give by matrices:(
J3
)
mm′ ≡ 〈j,m|J3|j,m′〉 = ~mδmm′ (2.57)

(J±)mm′ ≡ 〈j,m|J±|j,m′〉 = ~
√
j(j + 1)−mm′δm,m′±1 (2.58)

This is the standard form of the j-irrep of SO(3)
Spherical harmonics: Consider L2(S2,m dθ dϕ) = H, ONB given by

ψml (θ, ϕ) = (−1)m
√

(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimϕ (2.59)

with l ∈ N0 , m ∈ {−l,−l + 1, · · · , l} ONB means:〈
ψml

∣∣∣ψm′

l′

〉
=

∫ π

0

dθ

∫ 2π

0

sin θψ
m

l (θ, ϕ)ψ
m′

l′ (θ, ϕ) = δll′δmm′ (2.60)

32



and they span H. In spherical coordinates, orbital angular momentum

~L = ~x~p = ~

i sinϕ∂θ + i cosϕcot(θ)∂ϕ
cosϕ∂θ − sinϕcot(θ)∂ϕ

−i∂ϕ

 (2.61)

independet of r. Thus ~L acts on H, and one finds

~L2ψml = ~2l(l + 1)ψml , L3ψml = m~ψml (2.62)

recognize l-irreps of so(3). Use this often:

L2(R, d3x) =∼ L2
(
R+, r

2 dr
)
⊗H (2.63)

then, natural to use basis functions

f(r)ψml (θ, ϕ) (2.64)

in probmes involving rotational symmetry.
Note: l = 1

2
, 3
2
, . . . are not allowed Spin: Intrinsic angular momentum of particles.

Electron has spin described by

~S =
~
2
~σ (2.65)

on C2. (Pauli matrices ~σ.
This is just the j = 1

2
irrep of eq (2.40). Consequently, state space of H-atom is

H = span

{
|nlm〉 ⊗

∣∣∣∣12 , s
〉 ∣∣∣∣∣s = ±1

2
, nlm = . . .

}
(2.66)

Similar for other elementary particles

• Bosons → integer j

• Fermions → half-integer j

No Fermions with j > 1
2
observed

Example 2.10. For addition of angular momentum:

• H-atom: |nlm〉 ⊗
∣∣1
2

〉
=̂ |m, s〉, different Basis: |jtot,mtot〉 : l ⊗ 1

2
= (l + 1

2
)⊕ (l − 1

2
)

• Isospin: ∆-Quadruplett (∆++, ∆+, ∆0, ∆−), nucleon duplett consisting of (p, m).
Hypothesis: Made of three I = 1

2
partices (

”
Quarks“).

Check:

1

2
⊗ 1

2
⊗ 1

2
= (1⊕ 0)⊗ 1

2
(2.67)

3

2
⊕ 1

2
⊕ 1

2
(2.68)

Because of the Pauli-principle the second 1
2
disappears.

→ ∆, N from (u, d) quarks.
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2.4 Spin j = n+ 1
2 , n ∈ N0

Consider rotations around fixed axis. WLOG. z-axis. Generator a3 in j-irep:

J3 =


j 0

j − 1
. . .

0 −j

 (2.69)

hence

Πj = (Rϕ)e
iϕJ 3

~ = diag(eijϕ, ei(j−1)ϕ, . . . , e−ihϕ) (2.70)

This is strange, because for j = n+ 1
2
, n ∈ N0

lim
ϕ→2π

Πj(Rϕ) = diag(eiπ, eiπ, . . . , eiπ) = −1Hj
6= Πj(R0) (2.71)

So Πj defined this way is not a representation of SO(3). Only for ϕ→ 4π would get 1
again. Look at special case j = 1

2
:

J3 =

(
1 0
0 −1

)
~
2
, J1 =

(
0 1
1 0

)
~
2
, J2 =

(
0 −i
i 0

)
(2.72)

Notice jk = ~
2
σk with σk Pauli notation:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −1
i 0

)
, σ3 =

(
1 0
0 −1

)
(2.73)

Exponentials eiJ
k 1
~ are unitary 2x2 matrices, belong to group

Definition 2.7. SO(2): Group of U ∈M (2× 2,C)
U † = U−1, det(U) = 1

In homework had seen: Group generators are τ k = i
2
σk

Thus

su(2) =
{
M ∈M(2× 2,C),M † = −M, tr(M) = 0

}
Had seen: [

τ k, τ l
]
=
∑
m

εklmτ
m

Set τ̃ k = −τ k. Then: τ̃ k are bases of su(2), too. and[
τ̃ k, τ̃ l

]
=
∑
m

−εklmτ̃m (2.74)

Compare with the relations among generators of SO(3)[
ak, al

]
=
∑
k

−εklmam

Exactly the same. Same abstract Lie-algebra, same (irreducible) representation. Thus:
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• SO(3) and SU(2) are
”
same near 1“

• SO(3) and SU(2) differ “globally”

Relations SO(3) - SU(2)

Consider j = 1 representation of SU(2). Must be 3-dimensional:

Πj=1

(
e~v
~̃τ
)
:= e~vπj=1(~̃τ) (2.75)

Had already seen that Lie group G acts on its Lie algebra A via

π(g)b := gbg−1 (2.76)

called adjoint representation. For SU(2): Note

det(π(g)b) = detdetg−1det(b) = det(b)

Identically R3 with su(2) via

R
3 3 ~v 7→ b~v := ~v · ~τ =

∑
k

vkτ k

Then det(b~v) =
1
4
|~v|2. So (2.76) induces orthogonal transformation on R3. Can show: in

SO(3). Moreover:

• is a representation

• Π(SU(2)) = SO(3)

• is group-homomorphism

• Π is 2 to 1: For g ∈ SU(2), −g ∈ SU(2)
π(−g)b = (−1)2gbg−1 = π(g)b
so g and −g are mapped at the same element in SO(3).

Finally:

Π
(
e~v
~̃τ
)
= Πj=1

(
e~v
~̃τ
)
= e~v~a (2.77)

Topological structure of SO(3), SU(3)

1. SO(3) : g = e~v~a=̂ Rotation around axis given by ~v with angle |~v|
⇒ SO(3)=̂ 3d solid ball with opposite points identified on surface.
⇒ ∃ non-contractible loops, SO(3) not simply connected.

2. SU(2) : g = e~v~τ

⇒ SU(2): Sphere S3

⇒ SU(2) simply connected (no holes)

3. 2 - 1 map SU(2)→ SO(3)
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Back to representation

For SU(2)

Πj

(
e~v·~τ
)
:= e~vπj(~τ)

gives representation for any j. For SO(3)

Πj

(
e~a·~a
)
:= e~vπj(~a)

give a rep for j ∈ N0. For j = n+ 1
2

Πj

(
e~v1~a
)
Πj

(
e~v2~a
)
= C(v1, v2)Πj

(
e~v1~ae~v2~a

)
(2.78)

with C(v1, v2) ∈ {±1}

Definition 2.8. Map Π with (2.78) where C total values on unit circle is called a
projective prep.

2.5 General form of symmetries

Consider system (H, O,H), symmetry group G. Let: H1 = {v ∈ H, ‖v‖ = 1} , ρ =
{[v], v ∈ H} , [v] := {eiϕv, ϕ ∈ R}.

Definition 2.9.

l : H1 → ρ, v → [v] (2.79)

Symmetry group comes with rep. Πρ, which has (2.80)

| 〈[v]|[w]〉 | = | 〈Πρ(g)[v]|πρ(g)[w]〉 |

Given g ∈ G, is there an operator Ug, such that

l ◦ Ug = Πρ(g) ◦ l (2.80)

Theorem 2.11 (Wigner’s theorem). For Πρ(g) with (2.80) there is always Ug fullfilling
(2.80), such that Ug is either linear and unitary or anti-linear and anti-unitary.

Definition 2.10. • U with U(λv + w) = λ̄Uv + Uw is called anti-linear and with
additionally 〈Uv|Uw〉 = 〈w|v〉 anti-unitary

• Adjoint U † of anti-linear operator is given by
〈
v
∣∣U †w

〉
= 〈Uv|w〉 = 〈w|Uv〉

Corollary 2.12. For symmetry group G, Ug given by (2.80) and Wigner’s theorem:
Π : g → Ug is a projective representation.
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Proof.

l ◦ Ugg′ U︸︷︷︸
(2.80)

= Πρ(gg
′) ◦ l = Πρ(g)πρ(g

′) ◦ l =︸︷︷︸
(2.80)

Πρ(g) ◦ l ◦ Ug′ =︸︷︷︸
(2.80)

l ◦ UgUg′

Thus Π(g)π(g′)Ψ ≡ UgUg′Ψ = eiφ(g,g
′,Ψ)Ugg′Ψ ≡ eiφ(··· )Π(gg′)Ψ with φ(g, g′,Ψ) ∈ R.

Actually does not depend on Ψ:

eiφ(g,g
′,Ψ1+Ψ2)Ugg′(Ψ1 +Ψ2) = UgUg′Ψ1 + UgUg′Ψ2

= eiφ(g,g
′,Ψ1)Ugg′Ψ1 + eiφ(g,g

′,Ψ2)Ugg′Ψ2

⇔ e±iφ(g,g
′,Ψ1+Ψ2)(Ψ1 +Ψ2) = e±iφ(g,g

′,Ψ1Ψ1 + e±iφ(g,g
′,Ψ2)Ψ2

⇔ φ(g, g′,Ψ1 +Ψ2) = φ(g, g′,Ψ1) = φ(g, g′,Ψ2)

Remark. • So most general form of a symmetry is a unitary/anti-unitary projective
representation on H

• example for projective rep. as symmetrys: Rotations for j = n+ 1
2
, n ∈ N0

• If G is simply connected, can choose phases φ = 0

• For larger class of G, projective rep. is equivalent to normal rep. of covering group

3 Time evolution, propagators, path integrals

Time evolution in QM ruled by Schrdinger equation

i~
∂

∂t
Ψ(t) = H(t)Ψ(t) (3.1)

In this section, we will rewrite (3.1) and it’s solutions in many different and usefull ways.

3.1 Review of basic motions

Definition 3.1 (Time evolution operator). For given initial conditions Ψ(t0) (3.1) has
unique solution Ψ(t) and hence we define map

U(t, t0) : Ψ(t0)→ Ψ(t) (3.2)

This map is linear and satisfies

U(t0, t0) = 1 and U †(t, t0) = (U(t, t0))
−1 and U(t, t1)U(t1, t0) = U(t, t0) (3.3)

. U(t, t0) is called “time evolution operator”.
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How to determine U(t, t0)? Plugging Ψ(t) ≡ U(t, t0)Ψ(t0) into (3.1), for arbitrary
Ψ(t0).

i~
∂

∂t
U(t, t0) = H(t)U(t, t0) (3.4)

which, together with initial condition U(t0, t0) = 1 defines U uniquely. For H(t) = H
time independent can integrate (3.4) easily to get

U(t, t0) = e−
i
~H(t−t0).

For time dependent situation, two cases:

1. ∀t1, t2 : [H(t1), H(t2)] = 0

2. ∃t1, t2 : [H(t1), H(t2)] 6= 0

For 1. solution is

U(t, t0) = exp

(
− i
~

∫ t

t0

H(t′)dt′
)

(3.5)

while for case 2. no simple solution exsts, but interesting series expansion: Integrating
(3.4) from t0 to t

U(t, t0) = 1−
i

~

∫ t

t0

dt′H(t′)U(t′, t0) (3.6)

Iterate (3.6), to get Dyson series

U(t, t0) = 1−
i

~

∫ t

t0

dt′H(t′) +

(
− i
~

)2 ∫ t

t0

dt1

∫ t1

t0

dt2H(t1)H(t2)U(t2, t0) = · · ·︸ ︷︷ ︸
recursion

= 1+
∞∑
n=1

(
− i
~

)n ∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtnH(t1) · · ·H(tn) (3.7)

Can write this in more compact form, using the time ordered product:

T (H(t1) · · ·H(tn)) := H(tσ(1))H(tσ(2)) · · ·H(tσ(n)) (3.8)

with σ ∈ Sn (group of permutations of n objects) s. t. tσ(1) ≥ tσ(2) ≥ · · · ≥ tσ(n)

Using this we can write:∫ t

t0

dt1

∫ t

t0

dt2T (H(t1)H(t2)) =

∫ t

t0

dt1

∫ t1

t0

dt2H(t1)H(t2)︸ ︷︷ ︸
(I) see 5

+

∫ t

t0

dt2

∫ t2

t0

dt1H(t2)H(t1)︸ ︷︷ ︸
(II)

= 2

∫ t

t0

dt1

∫ t1

t0

dt2H(t1)H(t2)
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t2

t1

t1 = t2

t

t

(II)

(I)

Figure 5: Times in the integrals

Similarly one gets for n integrals:∫ t

t0

dt1

∫ t

t0

dt2 · · ·
∫ t

t0

dtnT (H(t1) · · ·H(tn)) = n!

∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtnH(t1) · · ·H(tn)

And hence:

U(t, t0) = 1+
∞∑
n=1

1

n!

(
− i
~

)n ∫ t

t0

dt1

∫ t

t0

dt2 · · ·
∫ t

t0

dtnT(H(t1) · · ·H(tn))

= 1+
∞∑
n=1

1

n!
T

[(
− i
~

∫ t

t0

dt′H(t′)

)n]
= T[e

− i
~
∫ t
t0
dt′H(t′)

]

(3.9)

Where we have extended T by linearity. Note that for [H(t), H(t′)] = 0∀t, t′ T is the
identity and (3.9) colapses to (3.5). Late we will use this for the case H = H0+V , where
H0 is simple and V small. Then (3.9) gives good approximation when truncated at finite
order.

Heisenberg picture

We can also consider operators to be time dependent, while the states stay constant:

〈A〉Ψ(t) = 〈Ψ(t0)|U †(t, t0)AU(t, t0)︸ ︷︷ ︸
=AH(t)

|Ψ(t0)〉 =︸︷︷︸
Ψ(t0)=Ψ

〈AH(t)〉Ψ (3.10)

Using (3.4), we can calculate that d
dt
AH(t) =

i
~ [HH(t), AH(t)]. Note that for [H(t), H(t′)] =

0∀t, t′ one has

HH(t) ≡ e
i
~
∫ t
t0
dt′H(t′)

H(t)e
− i

~
∫ t
t0
dt′H(t′)

= H(t)

For an observable with explicit time dependece A(t):

d

dt
AH(t) =

i

~
[HH(t), AH(t)] +

(
∂

∂t
A

)
H

(t) (3.11)
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the Heisenberg equation in the Heisenberg picture.
Had already discussed the constants of motion:

0 =
d

dt
AH(t)⇔ [HH(t), AH(t)] +

(
∂

∂t
A

)
H

(t) = 0⇔ [H(t), A(t)] +
∂

∂t
A = 0

Remark. Simplifies to just the commutators if A is not time dependent in the Schrdinger
picture.

Interaction picture

Useful if H(t) = H0(t) + V (t) , where H0 is “trivial” (already known, like spectral
decomposition). Then

ΨI(t) :=U
†
0(t, t0)Ψ(t)

where i~
∂

∂t
U0(t, t0) =H0(t)U0(t, t0), U(t0, t0) = 1

i.e. U0 is the time evolution operator wrt. H0. Time evolution:

ΨI(t) := UI(t, t
′
0)ΨI(t

′
0)

UI can be calculated to be

UI(t, t
′
0) = U0(t0, t)U(t, t

′
0)U0(t

′
0, t0) (3.12)

Remark. Implicit time dependence on t0!

To get a simple form for the expectation value

〈A〉Ψ(t) = 〈ΨI(t)|U †
0(t, t0)A(t)U0(t, t0)︸ ︷︷ ︸

=:AI(t)

|ΨI(t)〉 =: 〈AI(t)〉ΨI(t)
(3.13)

Same calculation as the one giving (3.11) from (3.10) here yields

d

dt
AI(t) =

i

~
[H0I (t), AI(t)] +

(
∂

∂t
A

)
I

(t) (3.14)

Crucial thing about the interaction picture:

i~
d

dt
UI(t, t

′
0) = i~

d

dt

(
U0(t, t0)

−1U(t, t′0)U0(t
′
0, t0)

)
= U0(t0, t) (H −H0)︸ ︷︷ ︸

V (t)

U(t, t′0)U0(t
′
0, t0)

= U0(t0, t)V (t)U0(t, t0)︸ ︷︷ ︸
=VI(t)

U0(t0, t)U(t, t
′
0)U0(t

′
0, t0) = VI(t)UI(t, t

′
0)

So

i~
d

dt
UI(t, t

′
0) = VI(t)UI(t, t

′
0) and UI(t

′
0, t

′
0) = 1 (3.15)
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i~
d

dt
ΨI(t) = VI(t)ΨI(t) (3.16)

(3.15) and (3.16) structurally identical to (3.4) and (3.1). But now time evolution is
completely given in terms of V. In particular (3.15) is formally solved by (3.9)

UI(t, t
′
0) = T (e

− i
~
∫ t
t′0
dt′VI(t

′)
)

= 1− i
~

∫ t

t′0

VI(t
′)dt′ +

1

2

(
i

~

)2 ∫ t

t′0

∫ t

t′0

dt1dt2T (VI(t1)VI(t2)) +O(V 3)
(3.17)

In case V can be considered small, truncating (3.17) gives systematic approximation.

Remark. 1. If |E1〉 , |E2〉 eigenstates of H0

P (E1, t1 → E2, t2) ≡ | 〈E2|U(t2, t1)|E1〉 |2

= |〈E2|U0(t2, t0)UI(t2, t1)U0(t0, t1) |E1〉|2

= |〈E2|UI(t2, t1) |E1〉|2

with (3.12) which can be expanded using (3.17)

2. This procedure called “time dependent perturbation theory“.

3.2 Propagators

Consider particle in R3. In many situations, U(t, t0) is given by an integral kernel K:

(U(t, t0)ψ) (x) =

∫
R

3

d3x′K(t, x, t0, x
′)Ψ(x′) (3.18)

Can understand K as matrix element of U :
Formally introduce eigenstates |~x〉 of ~x and the corresponding decomposition of 1

1 =

∫
R

3

d3x′ |~x′〉 〈~x′|

Actually: |~x〉 (~x′) ≡ δ(3)(~x− ~x′). Then:

(U(t, t0)ψ) (x)︸ ︷︷ ︸
〈x|U(t,t0)|ψ〉

=

∫
R

3

d3x′ 〈x|U(t, t0) |x′〉 〈x′|ψ〉

=

∫
R

3

d3x′ 〈x|U(t, t0) |x′〉ψ(x′)

So can identify:

K(t, x, t0, x
′) = 〈x|U(t, t0) |x′〉 (3.19)

ψ(~x) = 〈~x|ψ〉

ψ̃(~k) = 〈pk ≡ ~k|ψ〉 =
∫
R

3

e−i
~k~xψ(~x)

But: K may not be function. → Distribution.
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Composition property

Combining evolution operators

K(t, x, t0, x0) = 〈x|U(t, t1)U(t1, t0)|x0〉

=

∫
R

3

〈x|U(t, t1)|x1〉 〈x1|U(t1, t0)|x0〉 d3x1

=

∫
R

3

K(t, x, t1, x1)K(t1, x1, t0, x0) d
3x1

(3.20)

Interpretation of K(t, x, t0, x0): probability amplitude for particle to go from x0 at time
t0 to x at time t. So

P (t0, x0 → t, x) = |K(t, x, t0, x0)|2

the probability for this process. Caviat: This might have unexpected properties. (3.18)
exposes quantum mechanical superposition principle with the possibility of interference.
Therefore K is called a propagator . Calculate K for 1d free particle.

H =
p2

2m

using Fourier Transform:

(Fψ) (x) ≡ ψ̃(k) =
1√
2π

∫
R

e−ikxψ(x) dx(
F−1ψ̃

)
(x) =

1√
2π

∫
R

eikxψ̃(k) dk

(3.21)

F transforms from representation in which x is diagonal to one in which p is indeed:

(Fpψ) (k) = ~kψ̃(k) (3.22)

For

|p〉 (k) = δ(k − p

~
) |k〉 (3.23)

have

〈p|p′〉 = δ

(
p

~
− p′

~

)
(3.24)

and can calculate momentum space propagator:

〈p|U(t, t0) |p′〉 = δ

(
p− p′

~

)
e−

i
~

p2

2m
(t−t0)

and hence

K(t, x, t0, x0) =
1

2π

∫
R

3

dk

∫
R

3

dk′ei(k
′x′−kx) 〈p|U(t, t0) |p′〉 (3.25)
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=
1

2π~

∫
R

3

dpei
p
~ (x−x

′)e−
i
~

p2

2m
(t−t0)

This integral does not converge in standard sense. Can give meaning as distribution.
Replace:

i(t− t0) ≡ iT with z = τ + iT, τ > 0

and consider limit τ → 0. This kind of analytic continuation

T → T − iτ (3.26)

to complex or even imaginary time is called a Wick-Rotation. Will study more systemat-
ically later. For τ > 0, (3.25) becomes convergent. We have, for Re(a) > 0:∫

R
3

dxe−
1
2
ax2+ibx =

√
2π

a
e−

1
2a
b2 (3.27)

In the current situation:

x→ p , b =
x′ − x

~
, a =

1

m~
z

and hence:

K(z, x, x′) =

√
m

2π~z
e−

m
2~z (x−x

′)2 (3.28)

It is possible to take the limit τ → 0:

K(t, x, t′, x′) =

√
m

2πi~(t− t′)
e
i m
2~(t−t′) (x−x

′)2
(3.29)

But: In case of convergence problems in (3.18):
Treat as distribution, i.e. First τ > 0, then do integral (3.18), then limτ→0.
Free particle in R3 in tensor product of three 1d particle. Hence:

K(3d)(t, ~x, t′, ~x′) =

(
m

2πi~(t− t′)

) 2
3

e
i m
2~(t−t′) (~x−~x

′)2

Note the curios property of this propagator: The exponent can be written:

i
m

2~
(~x− ~x′)2

t− t′
=
i

~
S [~xCl(·)] (3.30)

where S [~x(·)] is the action functional, i.e.:

S[~x(·)] =
∫ t

t′
dt′′L

(
t′′, ~x(t′′), ~̇x(t′′)

)
with the L Langrange-function of the free particle. xCl denotes the classical solution to
the equation of motion with boundary values xCl(t) = x, xCl(t

′) = x′. Turns out: This
is true for all systems with quadratic Lagrangians. Reason for this is explained in the
following.
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3.3 The Feynman path integral

We will show that the propagator can be written as a path integral in a formal sense.

K(t, x, t0, x0) =

∫
P (t,x,t0,x0)

P [x(·)]e
i
~
∫
[x(·)]

Will show now: The propagator can be written as an integral over paths, at least in a
formal sense.
Consider

H =
p2

2m
+ V (x)

Time independent, so

U(t, t′) = e−
i
~H(t−t′)

only depends on T := t− t′. Will with

〈x, U(t, t′)|x′〉 = 〈x|U(T )|x′〉 ≡ K(T, x, x′)

Want to rewrite K(t, x, t0, x0). Let N ∈ N, and

ε =
t− t0
N + 1

Then using (3.20)

K(t, x, t0, x0) =

∫
dx1

∫
dx2 · · ·

∫
dxNK(ε, x, xN)K(ε, xN , xN−1) · · ·K(ε, x1, x0)

(3.31)

Can make ε small by increasing N . So: find approximation for K(ε, xN , xN−1) valid for
small ε. To do that, from (3.12) with t′0 = t0

U(ε) = U0(ε)UI(ε)

Moreover

UI(ε) = T · exp
(
− i
~

∫ ε

0

V (xI(t
′) dt′

)
with

xI(t
′) = U †

0(t
′)xU0(t

′)x = x+
p

m
t′

Now:

UI(ε) = 1−
i

~

∫ ε

0

V (xI(t
′)) dt′ +O(ε2)
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= 1− i

~
V (x)ε+O(ε2)

= e−
i
~V (x)ε +O(ε2)

Then, for small ε:

K(ε, xN , xN−1) = 〈xN |U0(ε)UI(ε)|xN−1〉

' 〈xN |U0(ε)e
− i

~V (x)ε|xN−1〉

= 〈xN |U0(ε)|xN−1〉 e−
i
~V (xN−1)ε

=

√
m

2πi~
exp

[
i
ε

~

(
m

2

(
xN − xN−1

ε

)2

− V (xN−1)

)]
(3.32)

Combining (3.31) and (3.32)

K(t, x, t0, x0) =

√
m

2πi~ε

∫
dx1√
2πi~ ε

m

· · ·
∫

dxN√
2πi~ ε

m

e
i
~Σ (3.33)

with

Σ = ε
N+1∑
n=1

(
m

2

(
xn − xn−1

ε

)2

− V (xn−1)

)

where we have set xN+1 := x. σ is the Riemann-sum approximation of the action of the
particle:

lim
N→∞

Σ =

∫ t

t0

dt′
(
1

2
mẋ2 − V (x)

)
= S[x(·)]

would hold for xN = x(nε) where x(t) is a smooth path. Try to take limit N →∞ every
where. Have to integrate over positions of the particle at each and all times, i.e. over
paths x(t). This is the idea of a path integral (Feynman):

x

t

x0

x1

xN

N → ∞

x

t

x0

xN

Figure 6: Idea of a path integral
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dx1√
. . .

. . .
dxN√
. . .
→ D[x(·)]

where the measure D is something like

D[x(·)] = lim
N→∞

√
m

2πi~ε

N∏
n=1

dx(εn)√
2πi~ ε

m

Thus we can write:

K(x, t, x0, t0) =

∫
P(t,x,t0,x0)

D[x(·)]e
i
~S[x(·)] (3.34)

where the space P of path to be integrated over consists of paths x(t) with x(t0) =
x0, x(t) = x.

Remark. 1. Up to now, there is no way to make (3.34) literally true for interesting
systems, in a well defined math conntext.

2. (3.34) tremendously important source of correct results

3. Can make “relatives” of (3.34) well defined

Example 3.1. Euclidean path integral → later.

Path integral and classical limit

S changes rapidly if x(·) is varied, → interference effects that can enhance or decrease
amplitude. Consider

x(·) = x0(·) + εh(·)

Taylor expand in ε.

S[x(·)] = S[x0(·)] + ε
d

dε

∣∣∣∣
ε=0

S[x(·)]︸ ︷︷ ︸
(∗)

+O(ε2) (3.35)

For suitable S, (∗) will have form:

d

dε

∣∣∣∣
ε=0

S[x(·)] =
∫
F (x0(t

′′), ẋ(t′′), t′′ . . . )h(t′′) dt′′ (3.36)

Then one calls S differentiable, and

F :=
δS

δx(·)

∣∣∣∣
x0(·)
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In the path integral, contribution from

h(t′′) , h(t′′) +
π~

F (t′′, · · · )(t− t0)

cancel each other, making contributions from the neighbourhood of x0 not contribute to
the path integral. More precise argument can be given (“Riemann-Lebesgue-Lemma”).Shows:
decaying stronger than polynomial in ~. These arguments break down if

F (t′′, · · · ) = δS

δx

∣∣∣∣
x0

= 0. (3.37)

Then S[x0] and the quadratic order ε2
∫ ∫

h(t′)h(t′′) G(· · · )︸ ︷︷ ︸
= δS

δx(t′)δx(t′′)

∣∣∣
x(·)=x0(·)

dt′dt′′ give non-

vanishing contributions. In fact (3.37) are the Euler-Lagrange-equations of classical
mechanics!
So the main contribution come from classical parts.

K(t, x, t0, x0) ≡
∫
P (t,x,t0,x0)

D(x(·))eiS[x]/~ =︸︷︷︸
expand S to second order

∑
xCl(·)

ei
S[xcl(·)]/~BxCl

(t, x, t′, x′)

(3.38)

where

• S[xCl(·)] =
∫ t
t0
L[xCl(t

′), ẋCl(t
′), t′]dt′ where xCl(·) solves the EOM, xCl(t0) =

x0 and xCl(t) = x

• B is the “Gaussian integral” from the second order term in the action, for quadratic
Lagrangians: B only depends on t,t′ → see (3.29)

∫
D[h]e

iε2
∫ ∫

hhδS/δxδx/~

Quantum mechanical interference

Can be discussed using the path integral: Consider double slit experiment:
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0

y

d
2

−d
2

x1(·)

x2(·)

L

Figure 7: Double slit experiment

for small y (3.38) gives

K ≈
(
e

imyd
~2∆t︸ ︷︷ ︸

from x2(·)

+ e−
imyd
~2∆t︸ ︷︷ ︸

from x2(·)

)
∝ cos

(
1

2

myd

~∆t

)
= cos

(
πd

λL
y

)
(3.39)

where we have introduced the de Broglie wavelength λ = h
p
= h∆t

mL
. This will result in a

interference pattern with fringes at yn = ±λL
d

(
n+ 1

2

)
(more dertails in the HW).

y

|k|2

λL
2d

Figure 8: Sinc-function

3.4 Perturbation theory with Feynman diagrams

Perturbation treatment of H = H0 + V ,

H0 =
p2

2m
+
mω2

2
x2 and V = λ

xk

k!
(3.40)

x2 term is included in H0 so that it has a unique state. Goal: Perturbatively calculate
time ordered n-point functions

τ(t1, t2, · · · tn) := 〈Ω|T (XH(t1)XH(t2) · · ·XH(tn))|Ω〉 (3.41)
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with |Ω〉 the ground state of H. This means expressions |Ω〉 by |0〉 (ground state of H0)
and XH(t) by XI(t) order by order in λ: Remember for HO:

XH(t) ≡ XI(t) =
1√
2ω

~
m

(
ae−iωt + a†eiωt

)
(3.42)

with
[
a, a†

]
= 1 annihilation and creation operator of HO, i.e.

a |0〉 = 0 (3.43)

Theorem 3.2 (Magic formula of Gell-Mann and Low). Consider

e
−i/~HT |0〉 = e

−i/~E0T |Ω〉〈Ω| |0〉+
∑
n>0

e
−i/~EnT |n〉〈n| |0〉 (3.44)

with |n〉 the higher energy eigenstates of H, so that E0 < En∀n. Thus

|Ω〉 = lim
T→∞(1−iε)

e−i/~HT |0〉
e−i/~E0T 〈Ω|0〉

= lim
T→∞(1−iε)

UI(t0,−T ) |0〉
e−i/~E0(T+t0) 〈Ω|0〉

where we have set the zero point of energy such that H0 |0〉 = 0, and used:

e−
i/~H(T+t0) = e−

i/~H(t0−(−T ))e−
i/~H0(−T−t0)e

i/~H0(−T−t0) = UI(t0,−T )ei/~(−T−t0)H0 .

Similarly:

〈Ω| = lim
T→∞(1−iε)

〈0|UI(T, t0)
e−i/~E0(T−t0) 〈0|Ω〉

Note that this implies:

1 = 〈Ω|Ω〉 = lim
T→∞(1−iε)

〈0|UI(T,−T ) |0〉
e−2i/~E0T | 〈0|Ω〉 |2

Expressing XH(t) by XI(t):

XH(t) = U †(t, t0)XU(t, t0) = U †(t, t0)U0(t, t0)XI(t)U
†
0(t, t0)U(t, t0) =︸︷︷︸

(3.12)

U †
I (t, t0)XI(t)UI(t, t0)

Hence for t1 > t2 > · · · tn > t0

T (XH(t1) · · ·XH(tn)) = U †
I (t1, t0)XI(t1)UI(t1, t2)XI(t2) · · ·UI(tn−1, tn)XI(tn)UI(tn, t0)

Putting everything together we get

τ(t1, · · · tn) = lim
T→∞(1−iε)

〈0|UI(T, t0)XI(t1)UI(t1, t2)XI(t2) · · ·XI(tn)UI(tn,−T ) |0〉
〈0|UI(T,−T )|0〉

.
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Since T becomes larger and −T smaller than any ti, we can write

τ(t1, · · · tn)1 = lim
T→∞(1−iε)

〈0|T (· · · ) |0〉
〈0|T (· · · )|0〉

can drop requirement t1 > t2 · · · ! Now we can collect all UI in the numerator, because
time-ordering takes care:

τ(t1, · · · tn) = lim
T→∞(1−iε)

〈0|T (XI(t1) · · ·XI(tn) exp
[
− i

~

∫ T
−T VI(t

′)dt′
]
) |0〉

〈0|T (exp
[
− i

~

∫ T
−T VI(t

′)dt′
]
)|0〉

(3.45)

The “magic” formula of Gell-Mann and Low. Remains to expand RHS of (3.45) in orders
of λ. Important information about HO expectation values:

Theorem 3.3 (Wick’s theorem (for the HO)). For m = n + k vertices, where k are
internal (λk order) and n external (n-point function) vertices.

〈0|T (XI(t1) · · ·XI(tm)) |0〉 =


0 if m is odd∑
partitions of n into
unordered pairs

∏
pairs

{(p1, p2)}

〈0|T (XI(tp1)XI(tp2)) |0〉 (3.46)

Example 3.4.
〈0|T (XI(1)XI(2)XI(3)XI(4))|0〉

= 〈0|T (XI(1)XI(2))|0〉 〈0|T (XI(3)XI(4))|0〉
+ 〈0|T (XI(1)XI(3))|0〉 〈0|T (XI(2)XI(4))|0〉
+ 〈0|T (XI(1)XI(4))|0〉 〈0|T (XI(2)XI(3))|0〉

(3.47)

Which will be proofed later.

The sole building block of this is the Feynman propagator

τ0(t1, t2) = 〈0|T (XI(t1)XI(t2))|0〉 .

Using previous equations (WLOG t1 > t2)

τ0(t1, t2) =
1

2ω

~
m
〈0|αe−iωt1α†eiωt2|0〉 = e−iω(t1−t2)

1

2ω

~
m

= e−iω|t1−t2|
1

2ω

~
m

not necessary to have t1 > t2

Application of Wick’s theorem can be visualized by diagrams: Feynman diagrams. Each
line is a Feynman propagator τ0

1 3

τ

2 4

=

1 3

2 4

+

1 3

2 4

+

3

4

1

2
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Numerator of (3.45). For definitenes: K = 4 in (3.40), n = 2 in (3.45)

X := 〈0|T (XI(t1)XI(t2) exp

[
− i
~

∫ T

−T

λ(XI(t))
4

4!
dt

]
) |0〉

= 〈0|T (XI(t1)XI(t2)(
1+

(
− iλ

~4!

)∫
(XI(t))

4dt+
1

2

(
− iλ

~4!

)2 ∫
(XI(t))

4(XI(t
′))4dtdt′ + · · ·

)
|0〉

= τ0(t1, t2)−
iλ

~4!

∫
〈0|XI(t1)XI(t2)(XI(t))

4|0〉 dt+ · · ·

= τ0(t1, t2)− 3
iλ

~4!
τ0(t1, t2)

∫ T

−T
dtτ0(t, t)τ(t, t)

− 12
iλ

~4!

∫ T

−T
dtτ0(t1, t)τ(t, t2)τ(t, t) + · · ·

= 1 2 +
1

8
1 2 t +

1

2
1 t 2 + · · ·

Prefactors 1
8
(2*2[one 2 per loop] * 2[switch loops]), 1

2
(one loop) result from absorbing

some of the numerical prefactors into the diagram.

Feynman rules

Diagram name analytic expression

t1 t2 propagator τ0(t, t
′)

t internal vertex − iλ
~

∫ T
−T dt

Symmmetries in diagram divide by symmetry factor
(example see above)

To calculate the X:

X =

(
Sum over all possible (internal vertices must
be 4-valent) diagrams with 2 external vertices

)
(3.48)

Remark. Two different types of diagrams:

• without “vacuum bubbles”: 1 2 or 1 t 2
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• with “vacuum bubbles”: 1 2 t or t t′

Where a “vacuum bubble” is a component (sub-)diagram without external legs.

Combinatorics gives:(∑ all possible Feynman dia-
grams with n external legs

)
=
(∑ all diagrams without

vacuum bubbles

)
· exp

(∑ all vacuum
bubble diags.

)
︸ ︷︷ ︸

=(∗)

(3.49)

where multiplication is the union of diagrams.

Example 3.5. 1 2 · t = 1 2 t

So (∗) = 1 +

 + + + · · ·


︸ ︷︷ ︸

(a)

+
1

2
(a)2 + · · ·

= 1 + (a) +

 + + · · ·

+ · · ·

Furthermore: Denominator in (3.45)

〈0|T (exp
[
− i
~

∫ T

−T

λ(XI(t))
4

4!
dt

]
)|0〉 = exp

(∑ all vacuum
bubbles

)
(3.50)

(One can proof this, see reference) Thus we finally find

τ(t1, · · · tn) = lim
T→∞(1−iε)

(∑ all possible (“connected”) Feynman diagrams
with n ext. legs without vacuum bubbles

)
(3.51)

Remark. • many terms subsumed under a single diagram

• No guaranty that power series in λ converges

• No guaranty that the integral for a single Feynman diagram converges (→ Problem
of renormalisation in QFT)

• Standard pertubation approach in QFT → Scattering amplitudes
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Feynman rules in general cases

For general k, rule for internal vertices

t
k legs ↔ −iλ

~

∫ τ

−τ
dt

More generally, V =
∑

k λk
xk

k!
gives different types off internal vertices:

t
k legs ↔ −iλk

~

∫ τ

−τ
dt

Finally, we would have H = H
(1)
0 ⊗ H

(2)
0 ⊗ · · · ⊗ H

(l)
0 + V with harmonic oscillators

H
(i)
0 , i ∈ {1, · · · , l} and V = λ

∏l
i=1

(x(i))ki

ki!
. Then Feynman rules become:

Diagram analytic expression

(i)t1 t2 τ
(i)
0 (t, t′)

t
(1)

(1)
(2)

(3)

k legs − iλk
~

∫ T
−T dt

Often different lines for different Feynman propagators

(1)t1 t2 ↔ t1 t2

(2)t1 t2 ↔ t1 t2

In QFT this would correspond to different particle species.

4 Scattering Theory

Theoretical description of scattering experiment:
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source

target

detector

Figure 9: Scattering apparatus

Main assumption

Interaction between particles and target falls off fast, such that particles are approximately
free away from vicinity of the target.

Main goal

Calculation of scattering cross section: Consider a particle bunch B scattering off of
target bunch A with velocity v:

lB

v

ρB lA ρA

Figure 10: Scattering apparatus

There is a cross section area AC common to both bunches, then:

σ :=
N

ρAlAρBlBAC
(4.1)

the scattering cross section, where N is the number of observed scattering events.
Scattering events are usually selected according to parameters, i.e. energy, particle-
content, scattering angle, · · · → σ becomes dependent on the selection of parameters.
Most important for QM: angular selection: σ = σ(Ω), where Ω is the solid angle (area
on the unit sphere).
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1

Ω

x̂

Figure 11: Solid angle on the unit sphere

Then dσ
dΩ
(x̂) the differential cross section in direction of x̂ (unit vector) is also relevant.

Remark. σ has units of an area. We can indeed imagine every particle of A as a scattering
area σ of bunch B:

N = NAσρBlB, NA = ρAlAAC (4.2)

In principle: scattering of wave packets:

Figure 12: Scattering of a wave packet (before — during — after)

It turns out, that we can analyse the situation for wave packets by considering the
stationary case (wave packet → plane wave). We will find a solution to the Schrödinger

Ψ+
k (~x) ≈ eik~x + fk(x̂)

eikr

r
(4.3)

with x̂ = ~x/|~x|, r = |~r|. We will calculate the scattering amplitude fk(x̂) in various
approximations. The differential cross section will be given by

dσ

dΩ
(x̂) = |fk(x̂)|2 (4.4)

4.1 S-matrix, scattering amplitudes

Consider H = H0 + V,H0 =
p2

2m
with short range potential V , such that

lim
|~x|→∞

|~x||V (~x)| = 0 (4.5)
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Remark. This excludes the Coulomb potential, but it is possible to treat the Coulomb
potential with a similar formalism (see tutorial).

We can expand the wave function in terms of eigenbasis of H0,∣∣∣~k〉 (~x) = 1

(2π)3/2
ei~x

~k (4.6)

with 〈
~k
∣∣∣~k′〉 = δ(~k − ~k′), H0

∣∣∣~k〉 =
~2~k2

2m

∣∣∣~k〉 =: E0(~k)
∣∣∣~k〉 .

We now consider a wave packet in the interaction picture:

ΨI(t, ~x) =

∫
C(t,~k)

∣∣∣~k〉 (~x)d3k
Remark. C±(~k) := limt→±∞C(t,~k) is well defined because ΨI becomes constant in t for
large/small t (ΨI evolves with VI , which becomes negligible far away from the target).
All information about scattering is in the map C− → C+. In fact:

C+(~k
′) =

∫
C−(~k)S(~k,~k

′)d3k with

S(~k,~k′) =
〈
~k
∣∣∣S∣∣∣~k′〉 , S = Texp

(∫ ∞

−∞
dtVI(t)

)
, (4.7)

where S as well as the matrix elements S(~k,~k′) are called S-matrix (scattering matrix) .

We now set the reference time t0 = 0, and interpret the |k〉 as Schrdinger states at
t = 0,

S(~k,~k′) = lim
t→∞,t′→−∞

〈
~k
∣∣∣e i

~H0te−
i
~H(t−t′)e−

i
~H0t′

∣∣∣~k′〉 =(−)
〈
~k
∣∣∣~k′〉(+)

(4.8)

with
∣∣∣~k〉(±)

= lim
t′→±∞

U(0, t′)U0(t
′, 0)

∣∣∣~k〉 (4.9)

Interpretation:
∣∣∣~k〉(+)

was a plane wave in the distant past, while
∣∣∣~k〉(−)

will be a plane

wave in the distant future. The operators involved in (4.9)

Ω(±) := lim
t′→±∞

U(0, t′)U0(t
′, 0) (4.10)

are called Moeller operators (Wave operators) and have a remarkable property

Ω(±)H0 = HΩ(±) (4.11)

since S =
(
Ω(−)

)†
Ω(+) (4.12)
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it follows that [S,H0] = 0. That means S(~k,~k′) ∝ δ(~k,~k′), and we parametrize

S(~k,~k′) =:
〈
~k
∣∣∣~k′〉− 2πiδ

(
E~k′ − E~k︸ ︷︷ ︸
≡E0(~k′)

)
T
(
~k′, ~k

)
(4.13)

First term ∝ wave going through without scattering, while we still have to calculate the
second one.

4.2 Lippman-Schwinger equation

At first we need some technology

Advanced and retarded propagators

G(±)(t) := ∓ i
~
Θ(±t)U(t) ≡ U(t, 0)

G
(±)
0 (t) := ∓ i

~
Θ(±t)U0(t)

(4.14)

the reatarded (+) and advanced (−) full and free (0) propagators Greens functions of
the Schrdinger equation: (

i~
∂

∂t
−H

)
G±(t) = δ(t)(

i~
∂

∂t
−H0

)
G±

0 (t) = δ(t)

Need F -transforms of these

G±
(0)(E)

?
:=

∫ ∞

−∞
dte

i
~EtG

(±)
(0) (t)

Integral will not be convergent in general. Define this (distribution!) by adding a small
imaginary part to the energy

G±
(0)(E)

!
:= lim

ε→0+

∫ ∞

−∞
dte

i
~ (E±iε)tG

(±)
(0) (t)

Example 4.1. Carry out the integration

G+
(0)(E) = lim

ε→0+
− i
~

∫ ∞

0

dte
i
~ (E+iε−H(0))t = lim

ε→0+

1

E −H(0) + iε
(4.15)

G−
(0)(E) = lim

ε→0+

1

E −H(0) − iε
(4.16)
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Will also need G
(+)
0 in position representation. In k-rep. we have〈

~k
∣∣∣G(+)

0 (E)
∣∣∣~k′〉 = lim

ε→0+

1

E − E~k + iε
δ(~k − ~k′)

from this we get for ε > 0

G
(+)
0 (E, ~x− ~x′) := 〈~x|G(+)

0 (E)|~x′〉 =
∫
d3k

1

(2π)3
1

E − E~k + iε
ei
~k(~x−~x′)

Use spherical coordinates to carry out θ, ϕ integrals for ε > 0

G
(+)
0 (E, ~x) =

1

(2π)2
1

i|~x|

∫ ∞

−∞
dk

keik|~x|

E − Ek + iε

Interpret as contour integral in the complex k-plane. Closing the contour in the upper
half plane, use of the theorem of residues yield

G
(+)
0 (E~k, ~x) = −

m

2π~
eik|~x|

|~x|
(4.17)

First thing to note

Ω(+) ≡ ~
i

∫ ∞

−∞

d

dt

[
G(+)(−t)U0(t)

]
dt =

∫ ∞

−∞
G+(−t)(H −H0)U0(t)dt+ 1

= 1 +

∫ ∞

−∞
G+(t)V U0(−t)dt

(4.18)

Now we apply this to
∣∣∣~k〉

Ω+
∣∣∣~k〉 = lim

ε→0

(
1 +

1

E~k −H + iε
V

) ∣∣∣~k〉 = lim
ε→0

1

E~k −H + iε

(
E~k −H + V + iε

) ∣∣∣~k〉
= lim

ε→0

iε

E~k −H + iε

∣∣∣~k〉 (4.19)

Finally we get

lim
ε→0

E~k −H + iε

E~k −H + iε
Ω+
∣∣∣~k〉 =

∣∣∣~k〉 and hence

⇔ Ω+
∣∣∣~k〉 =

∣∣∣~k〉+ lim
ε→0

1

E~k −H + iε
V Ω+

∣∣∣~k〉 =
∣∣∣~k〉+G+

0 (E~k)V Ω+
∣∣∣~k〉 (4.20)

the Lippmann-Schwinger equation. We can iterate∣∣∣~k〉+ = lim
ε→0+

(∣∣∣~k〉+
1

E~k −H0 + iε
V
∣∣∣~k〉+

[
1

E~k −H0 + iε
V

]2 ∣∣∣~k〉+ · · ·

)
(4.21)

58



Remark. • Heuristic interpretation: 0× scattering +1× scattering + · · ·

• Perturbation treatment: cut off after finitely many terms

Also ∣∣∣~k〉+ =
∣∣∣~k〉+

∣∣∣~k〉
sc

where
∣∣∣~k〉

sc
is the scattered contribution. Plugging (4.17) in (4.20)

∣∣∣~k〉+ (~x) =
1

(2π)3/2
ei
~k~x − m

2π~2

∫
d3x′

eik|~x−~x
′|

|~x− ~x′|
V (~x′)

∣∣∣~k〉+ (~x) (4.22)

4.3 Scattering amplitude and scattering cross section

Since V (~x) is short range, we can approximate:

|~x− ~x′| ≈ r − x̂~x′, x̂ =
~x

|~x|
, |~x| = r

in (4.22) for points ~x for array from target.∣∣∣~k〉+ (~x) ≈ 1

(2π)3/2
ei
~k~x +

1

(2π)3/2
f~k(x̂)

eikr

r
(~x)

where

f~k(x̂) = −
√
2πm

~2

∫
d3x′e−ikx̂~x

′
V (~x′)

∣∣∣~k′〉+ (~x′) = −
√
2πm

~2
〈
~k′
∣∣∣V ∣∣∣~k〉+ (4.23)

with ~k′ = |~k|x̂. f~k(x̂) is called the scattering amplitude.

Connection to the scattering cross-section

QM-probability current:

~j =
~

2mi

[
Ψ̄∇Ψ− ¯(∇Ψ)Ψ

]
(4.24)

Fullfills the continuity equation

ρ̇+∇~j = 0 with ρ = Ψ̄Ψ

A plane wave has

~j~k =
1

(2π)3
~~k
m

=
1

(2π)3
~V

59



For the scattered wave
∣∣∣~k〉

sc
, we find

~jsc(~x) =
~|~k|
m

1

r2
|f~k(x̂)|

2x̂+O( 1
r3
)

For the (differential) cross section:

σ(x̂, r,Ω) =
~jscx̂r

2Ω

|~j~k|
and

dσ

dΩ
=
~jscx̂r

2x̂

|~j~k|2
≈ |f~k(x̂)|

2 (4.25)

r

Ω
x̂

Figure 13: Angle

Born approximation

We iterate only once

f~k(x̂) ≈ −
(2π)2m

~2
〈
~k′
∣∣∣V ∣∣∣~k〉 = −(2π)2m

~2
1

(2π)3/2
Ṽ (~k′ − ~k) (4.26)

For V (~x) ≡ V (|~x|)

fk(θ) = −
2m

~2q

∫ ∞

0

dr′r′V (r′) sin(qr′)

with q = 2k sin
(
θ
2

)

θ

For V (~x) ≡ V (|~x|) we can partially calculate:

1

(2π)3/2
Ṽ (~k′ − ~k) = 1

(2π)3/2

∫
d3xe−i~q~xV (~x)

=
1

(2π)3/2

∫ ∞

0

dr′
∫ π

0

dθ

∫ 2π

0

dϕr′ sin(θ)e−iqr cos(θ)V (~r′)

=
2

(2π)2q

∫ ∞

0

dr′r′sin(qr′)V (r′)
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with q = |~q|, ~q = ~k′−~k can be interpreted as the momentum exchanged in the scattering
process.

q2 = ~k2 + ~k′2 − 2|~k||~k′| cos(θ) = · · · = 4k2 sin2(
θ

2
)

Then we have

fk(θ) = −
2m

~2q

∫ ∞

0

dr′r′ sin(qr′)V (r′) (4.27)

Partial wave decomposition

Usfull for V (~x) ≡ V (|~x|). Then
[
~L,H

]
= 0 and we can decompose into ~L-eigenfunctions.

∣∣∣~k〉+ (~x) =
∞∑
l=0

l∑
m=−l

a~klm(r)Ψlm(θ, ϕ)

For ~k+ ≡ k~ez, only m = 0 contributes, so we get∣∣∣~k〉 =
∞∑
l=0

Ukl(r)

r
Pl(cos(θ)) (4.28)

From (4.11):
∣∣∣~k〉+ eigenstate of H with eigenvalue E~k. Plugging in (4.28) into the

Schrdinger eq.

u′′kl(r) + (k2 − Vl(r)) = 0

Vl(r) =
2m

~2
V (r) +

~l(l + 1)

2mr2
(4.29)

Equations decouple, typically solve only for low l. In particular, l = 0: “S-wave
scattering”.

Scattering phases

Connection between fk(θ) and Ukl(r). We expand∣∣∣~k〉+ (~x) ≈ 1

(2π)3/2
ei
~k~x +

1

(2π)3/2
eikr

r
f~k(x̂)

in Legendre polynomials.

fk(θ) =
∞∑
l=0

(2l + 1)fk(l)Pl(cos(θ))
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Moreover

ei
~k~x = eikr cos(θ) =

∞∑
l=0

il(2l + 1)jl(kr)Pl(cos(θ)) (4.30)

with jl(·) a spherical Bessel function. For large r:

jl(kr) ≈
(
ei(kr−l

π
2
) − e−i(kr−l

π
2
)
)
/(2ikr)

and hence∣∣∣~k〉+ (~x) ≈ 1

(2π)3/2

∞∑
l=0

(2l + 1)
Pl(cos(θ))

2ik

(1 + 2ikfk(l))︸ ︷︷ ︸
=:Sk(l)

eikr

r
− e−i(kr−πl)

r

 (4.31)

Effects of scattering all in outgoing wave. We can show by sonsidering the probability

current j(~x) corresponding to
∣∣∣~k〉+ (~x), that |Sk(l)| = 1. Define scattering phase shift

δl(k)

Sk(l) = ei2δl(k) (4.32)

It follows that

fk(l) =
eiδl(k) sin(δl(k))

k

and

fk(θ) =
1

k

∞∑
l=0

(2l + 1)eiδl(k) sin(δl(k))Pl(cos(θ)) (4.33)

For small δl: fk(l) ≈ fl
k
is small. For δl ≈ π

2
: fk ≈ i

k
→ Resonances. Formula for dσ

dΩ
in

terms of δl’s not particularly enlightening. But

σtot =

∫
dσ

dΩ
dΩ =

∞∑
l=0

σl with σl =
2π

k2
(2l + 1) sin2(δl) (4.34)

shows independence of partial waves. Also

σl ≤
4π

k2
(2l + 1) ∝ 1

Ek

To calculate the phase shifts, we solve (4.29). Far away from 0:

|k〉+ ≈ 1

(2π)3/2

∑
l

Akl(r)︸ ︷︷ ︸
=

ukl
r

Pl(cos(θ))

Akl(r) ≈ il(2l + 1)eiδl (cos(δl)jl(kr)− sin(δl)nl(kr)) (4.35)

with nl(·) a Hankel function. Match continuously (1), differentiable (2) to solution of
(4.29) with ukl

∣∣
r=0

= 0. This yields 3 equations for 3 unknowns. 2 initial conditions for
ukl(·) and the δl ⇒ δl is determined.
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S-matrix and optical theorem

We can obtain fk(θ) directly from the S-matrix: First:

Ω± |k〉 =
(
1 +G(±)(Ek)V

)
|k〉 (4.36)

Then (
G+(E)−G−(E)

)
Ω(+) |k〉 = −2πiδ(E − Ek) (4.37)

Finally

(−) 〈k| = 〈k|V
(
G+(E)−G−(E)

)
++ 〈k|

And using this and the definitions of S(~k, ~k′)

S(~k,~k′) = δ(3)(~k − ~k′) + 2πiδ(E~k−E~k′
)

~2

(2π)2m
f~k(θ) (4.38)

From unitarity of S

δ3(~k − ~k′) =
∫
d3k′′

〈
~k′
∣∣∣S∣∣∣ ~k′′〉 〈~k′′∣∣∣S†

∣∣∣~k〉
and (4.23) and (4.38) we obtain the optical theorem

σtot =
4π

k
Im(fk(θ = 0)) (4.39)

5 Identical Particles

5.1 Introduction

Elementary particles of same species: experimentally indistinguishable: same mass, same
charge, ... Classically they are distinguishable by their position. In quantum mechanics
this is not well defined.

Example 5.1. Scattering

1. Classical

x

t

~p ~p′

1 2

x

t

~p ~p′

1 2

Figure 14: Classical scattering
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2. QM

x

t

~p ~p′

1 2

Figure 15: QM scattering

The two end states can be distinguished, in QM, particles are initially distinguished,
but not after scattering.

More formally:

Exchange degeneracy

Two identical particles H = h1 ⊗ h2, h1 = h2 = h ONB (orthonormal basis) of h: |k〉
with k = (k1, k2, · · · ) eigenvalues of complete set of observables O. Exchange operator:

T12 : |k1〉 ⊗ |k2〉 = |k2〉 ⊗ |k1〉

Where only the observables O with

[O, T ] = 0(T = T12) (5.1)

are experimentally accessible. Let φ ∈ H with 〈φ|T |φ〉 = 0, ‖φ‖ = 1. (for example
φ = |k〉 ⊗ |k〉 with k′ 6= k ) Then we have

Ψ = αφ+ βTφ, |α|2 + |β|2 = 1 (5.2)

These states are indistinguishable for observables with (5.1) (same expectation values
etc.). This is called exchange degeneracy.

Boson-Fermion alternative

Note that since

T † = T, T 2 = 1

we can compose into eigenspaces

H = H+⊗H−, T

∣∣∣∣
H±

= ±1H± (5.3)

Law of nature: Not all states in H are allowed. Only:
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• Bosons: states in H+

• Fermions: states in H−

This means that identical particles have smaller state spaces. We will see many conse-
quences of this.

Spin-statistics correspondence

In relativistic QFT, in dimesion d ≥ 3 + 1 one can approximately prove, that

• integer spin/helicity ↔ bosons

• half-integer spin ↔ fermions

using the understanding of T as physical (spatial) exchange of particles. In lower
dimesions, how many ways to exchange particles on spatial paths

• 3 + 1: one way up to deformations of path

• 2 + 1: many, SKETCH, would be different path exchanges different, could have
states between fermions and bosons

• 1 + 1: none

Boson-Fermion alternative does not hold in 2 + 1 and 1 + 1 dimensions.

5.2 n identical particles

Sn = {Permutations of n things} = {Bijective maps on n-element sets}

• Sn is a group wrt. concatination of permutations:

(P1 · P2)(x) = P1(P2(x)), with P1, P2 ∈ Sn

• every finite group is a subgroup of some Sn

Notation. 1. Sn 3 P =

(
1 2 · · · n

P (1)P (2) · · · P (n)

)
(where P (i) ∈ 1, 2, · · ·n)

2. P = (1 2)(3) · · ·: Cycle notation, by considering P, P 2, P 3, · · ·

Special case: Transposition Tij︸︷︷︸
=Pij

≡ (i j) ≡
(
1 · · · i · · · j · · · n
1 · · · j · · · i · · · n

)

Definition 5.1 (Signature). The signature is an important property of permutations

sign(P ) = (−1)I(p) (5.4)

with I =
∣∣{(x, y) ∈ 1, 2, · · ·n2 : x < y, P (x) > P (y)

}∣∣
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Lemma 5.2. 1.

sign(P ) = (−1)T(P ) (5.5)

where P = Pi1j1 · Pi2j2 · · ·︸ ︷︷ ︸
T(P )transpositions

2. sign is a group homomorphism:

sign(P1P2) = sign(P1) sign(P2) (5.6)

State space for n identical particles

State with

H = ⊗nk=1h

with {|k〉} a basis of h as before.

Notation. |k1〉 ⊗ · · · ⊗ |kn〉 ≡ |k1, · · · kn〉

Important subspace of H

Let n =
∑m

i=1 ni, ni ∈ N, ni 6= 0 l1, · · · lm with li 6= lk for i 6= k (li are the numbers that
describe a physical state). Then we define

H(n1, l1, · · · , nm, lm) :=
{
|k1, · · · kn〉 |ni many of the kj’s are equal to li

}
(5.7)

Then dimH(n1, l1, · · · ) = exchange degeneracy for the “physical” state n1l1, · · ·nmlm
Sn acts on H:

Π(P ) |k1〉 ⊗ · · · ⊗ |kn〉 =
∣∣kP (1)

〉
⊗ · · · ⊗

∣∣kP (n)

〉
Lemma 5.3. Π(·) is a unitary representation of Sn. For identical particles, we must
have

[Π(P ), O] = 0∀P ∈ Sn (5.8)

, in particular for O = H, the Hamiltonian.

Lemma 5.4. Π leaves the H(n1, l1, · · · ) invariant.

(Anti-)symmetrizer

S =
1

n!

∑
P∈Sn

Π(P ) and A =
1

n!

∑
P∈Sn

sign(P )Π(P ) (5.9)
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Lemma 5.5. 1. S and A are projections

S† = S, S2 = S and A† = A,A2 = A (5.10)

2.

Π(P )S = SΠ(P ) = S (5.11)

Π(P )A = AΠ(P ) = sign(P )A (5.12)

Bose-Fermi-alternative: Not all states of H are allowed, only

H+ := SH for Bosons

H− := AH for Fermions

5.3 Fermi- and Bose-Einstein statistics

Fermi-statistics: Obtain ONB ofH− by anti-symmetrizing states ofH (n1, l1, n2, l2, · · · )
[Remeber: Taake ni 6= 0 in our notation].

Lemma 5.6. 1. if n1 > 1 for some i, then AH (n1, l1, . . . ) = 0.

2. if all ni = 1, then there is a unique (up to normalisation) anti-symmetric state in
H(n1, l1, . . . )

√
n!A |l1, l2, . . . , ln〉 (5.13)

is a normalized representative.

Proof. 1. Let ψ ∈ H (n1, l1, . . . ) be of the form ψ =

∣∣∣∣∣∣. . . , ei︸︷︷︸
k

, . . . , ei︸︷︷︸
l

, . . .

〉
Then Π(P(kl))ψ = ψ, thus AΠ(P(kl))ψ = Aψ, but because (5.12): AΠ(P(kl))ψ =
−Aψ
⇒ Aψ = 0. If ni > 1 for some i, then all states in H(l1, n1, . . . ) are linear
combination of states of the above form (for various k, l).

2. Uniqueness is obvious. Check normalisation

||A |l1, l2, . . .〉 ||2 =
1

(n!)2

∑
P,P ′

sign(P )sign(P ′)
〈
lP (1), lP (2)

∣∣lP ′(1), lP ′(2)

〉︸ ︷︷ ︸
δP,P ′

=

1

(n!)2

∑
P

(signP )2
1

n!

gives normalisation of (5.13)
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Remark. 1. First statement gives Pauli-exclusion-principle!
This helps to explain the structure of atoms: For atom with n electrons:

• H =
(
L2(R3)⊗C2

)⊗n
• K = (n, l,m, s)

• Neglect interactions between electrons: H(n1, l1, . . . ) eigenspaces of energy.

• Lemma says: all n have to be 1.

Bose-Einstein-statistics: Consider symmetrization of H(n1, l1, . . . )

Lemma 5.7. There is , up to phase, one normalized totally symmetric state inH (n1, l1, . . . ):√
n!

n1!n2! . . . nm!
S

∣∣∣∣∣∣l1, l1, . . . , l1︸ ︷︷ ︸
n1times

, l2, l2, . . . , l2︸ ︷︷ ︸
n2times

, . . .

〉
(5.14)

Proof. Uniqueness up to phase:

ψ =
∑
P

cPΠ(P )

∣∣∣∣∣∣l1, l1, . . .︸ ︷︷ ︸
n1

, l2, . . . , l2,︸ ︷︷ ︸
n2

〉

But because (5.11):

Sψ =
∑
P

cP SΠ(P )︸ ︷︷ ︸
S

|〉 = cS

∣∣∣∣∣∣l1, l1, . . .︸ ︷︷ ︸
n1

, l2, l2, . . .︸ ︷︷ ︸
n2

, . . .

〉

So that shows uniqueness up to phase. Normalisation:

||S |l1, . . . , l2, . . .〉 ||2 =
1

(n!)2

∑
P,P ′

〈
lP (1)lP (2), . . .

∣∣lP ′(1), lP ′(2), . . .
〉

=
1

(n!)2

∑
P

(n1!)(n2!) . . . (nm!) =
(n1!)(n2!) . . . (nm!)

n!

which constitute normalisation of (5.14)

Remark. Note that in both, Fermi and Boson case, exchange symmetry is removed.

5.4 Fermi and Boson gas

n identical particles, weakly interacting:

H '
n∑
k=1

hk , hk = 1⊗ 1⊗ · · · ⊗ h⊗ 1⊗ · · · ⊗ 1 (5.15)
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with h the Hamiltonian for one particle. Denote Em , m ∈ N0 spectrum of h. For
simplicity, assume non-degeneracy. Then spectrum of H is

E =
∑
k

nkEk , nk ≥ 0 ,
∑
k

nk = n

Now allow energy exchange with heat bath. Expectation values are governed by density
matrix

ρ =
e−βH

Z(β)
, Z(β) = tr

(
e−βH

)
(5.16)

Consider Fermions first:

〈nk〉 =
∑

n nkexp (−β
∑

l nlEl)∑
n exp (−β

∑
l nlEl)

= − 1

β

∂ln (Z(β))

∂Ek
(5.17)

where
∑

n is over (n1, n2, · · · ) with ni ∈ {0, 1} ,
∑

i ni = n.

Definition 5.2.

Zk(N) :=
∑

n:nk=0,
∑

l nl=N

e−β
∑

l nlEl

Then:

〈nk〉 =
e−βEkZk(n− 1)

Zk(n) + e−βEkZk(N − 1)

Now treat N as continuous variable, and Taylor (n� 1) expand:

ln (Zk(n− 1)) ≈ ln(Zk(n))− αk with αk =
∂ ln(Zk(n))

∂n
or Zk(n− 1) ≈ Zk(n)e

−αk

Furthermore, assume that αk ' α. Then

〈nk〉 =
1

eα+βEk + 1
(5.18)

with α given by ∑
k

〈nk〉 = n

Similar calculation for the Boson gives

〈nk〉 =
1

eα+βEk − 1
(5.19)
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For high temperature (small β) behaviour is similar. For low temperature very different
behaviour.

α + βEk

〈nk〉

1

Bose

Fermi

Figure 16: Fermi-Dirac and Bose-Einstein distributions

5.5 Fock space

Often it is useful not to fix the particle number. As before, we have h the one particle
Hilbert space andHn := h⊗n,HA

n := AHn,HS
n := SHn the Hilbert spaces for n (identical)

particles. Let’s agree that

H0 = HA
0 +HS

0 = C (5.20)

, then we get

F(h) :=
∞⊕
n=0

Hn Fock space

FS(h) :=
∞⊕
n=0

HS
n Bosonic Fock space

FA(h) :=
∞⊕
n=0

HA
n Fermionic Fock space

(5.21)

the Hilbert spaces for arbitrary numbers of particles.

• states in different n-sectors are orthogonal

• linear combinations of states with different particle number possible

There are two ways a operator in h can operate in F·(h):

1. B operator on h, then Γ(B) is an operator on F·(h) by

Γ(B)

∣∣∣∣
H·

n

= B ⊗ · · · ⊗B︸ ︷︷ ︸
n-times

(5.22)

and linear extension. This is well defined as [A,B⊗n] = 0 = [S,B⊗n].

Remark. Γ(BC) = Γ(B)Γ(C),Γ(B)† = Γ(B†) , etc.
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2. dΓ(B) operator on F·(h) via

dΓ(B)

∣∣∣∣
H·

n

=
n∑
i=1

1⊗ · 1⊗ B︸︷︷︸
i

⊗1 · · · ⊗ 1 =:
n∑
i=1

Bi (5.23)

Remark. if we set Γ(B)
∣∣
H0

:= 1, dΓ(B)
∣∣
H0

:= 0

Γ(eiB) = eidΓ(B) (5.24)

Example 5.8. • Non-interacting particles, one-particle Hamiltonian h:

– dΓ(h) = Hamiltonian on F·(h)

– Γ(eith) = time evolution op. on F·(h)

• Number operator:

N := dΓ(1h) (5.25)

The observable corresponding to particle number. n-particle spaceH·
n are eigenspaces

of N :

N

∣∣∣∣
H·

n

= n 1

∣∣∣∣
H·

n

kernel of N is H0 “Vacuum”

Remark. Γ in particular and also the whole formalism in general is sometimes called
“second quantization” Many interesting operators on F·(h) don’t come from operators on
h!

Creation and annihilation operators

From now on F·(h) =
{
FS(h) FA(h) with

F·(h) 3 Ψ = (Ψ0,Ψ1,Ψ2, ...) with Ψk ∈ H·
k

Thus for ϕ ∈ h

a†(ϕ)(Ψ0,Ψ1, · · · ) = (0,Ψ′
1,Ψ

′
2, · · · ), with Ψ′

k =
√
kS(Ψk−1 ⊗ ϕ) (bosonic) (5.26)

c†(ϕ)(Ψ0,Ψ1, · · · ) = (0,Ψ′
1,Ψ

′
2, · · · ), with Ψ′

k =
√
kA(Ψk−1 ⊗ ϕ) (bosonic) (5.27)

These create a new particle in state ϕ, in each sector and are thus called creation operator.
Indeed we see, choosing some ONB {ϕi} of h (i↔ k, l from before), denote for

∑
i ni = n,

allowing ni = 0,

|n1, n2, · · ·〉· ∈ H
·
n
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the normalized state from lemmas, (5.13) and (5.14), then

a†(ϕi) |n1, n2, · · ·〉S =
√
ni + 1 |n1, · · ·ni−1, ni + 1, ni+1, · · ·〉S

c†(ϕi) |n1, n2, · · ·〉A = (1− ni) (−1)
∑

k<i nk |n1, · · ·ni−1, ni + 1, ni+1, · · ·〉A

And the annihilation operator is the adjoint of the creation operator:

a(ϕ) := (a†(ϕ))†

c(ϕ) := (c†(ϕ))†

Remark. Annihilation op. is anti-linear in ϕ. Also one can workout that

a(ϕ)S(v1 ⊗ · · · ⊗ vn) =
1√
n

n∑
k=1

〈ϕ|vk〉h S(v1 ⊗ v2 ⊗ · · · ⊗��ZZvk ⊗ · · · ⊗ vn) for n ≥ 1

a(ϕ)

∣∣∣∣
H0

= 0

(5.28)
and for c(ϕ)

c(ϕ)A(v1 ⊗ · · · ⊗ vn) =
1√
n

n∑
k=1

(−1)n−k 〈ϕ|vk〉h A(v1 ⊗ v2 ⊗ · · · ⊗��ZZvk ⊗ · · · ⊗ vn) for n ≥ 1

a(ϕ)

∣∣∣∣
H0

= 0

(5.29)

As always ϕ ∈ h. in the occupation number basis (wrt. ONB {ϕi})

a(ϕi) |n1, n2, · · ·〉S =
√
ni |n1, · · ·ni−1, ni − 1, ni+1, · · ·〉S

c(ϕi) |n1, n2, · · ·〉A = ni (−1)
∑

k<i nk |n1, · · ·ni−1, ni − 1, ni+1, · · ·〉A
(5.30)

One can work out commutation relations

[a(ϕ), a(ϕ)] =0 =
[
a†(ϕ), a†(ϕ)

][
a(ϕ), a†(Ψ)

]
= 〈ϕ|Ψ〉h 1Fs(h)

(5.31)

and for Fermionic fock space one has(
c†(ϕ)

)2
=0 = (c(ϕ))2 (5.32)

[c(ϕ), c(Ψ)] =0 =
[
c†(ϕ), c†(Ψ)

]{
c(ϕ), c†(Ψ)

}
= 〈ϕ|Ψ〉h 1FA(h)

(5.33)

with {·, ·} the anti-commutator ({A,B} = AB +BA)

72



Example 5.9. (mathematical) harmonic oscillator H = l2(C) = FS(C), a, a† the usual
annihilation and creation operators.

Remark. We can write dΓ in terms of a, a†

dΓ(B) =
∑
i,j

〈ϕi|B|ϕj〉 a†(ϕi)a(ϕj) (5.34)

This leads to the term “second quantization”.

Example 5.10.

h =
~p2

2m
+ V (~x), ϕi → δ3~x(·) and a†(δ3~x) =: a†(~x)

Then

H := dΓ(h) =

∫
d3xa†(~x)

(
~p2

2m
+ V (~x)

)
a(~x)

looks like “〈h〉a”. But a(~x) is nor operator, nor a wave function→ “second quantization”!

6 Relativistic Quantum Mechanics

In this chapter, we set

• c = 1

• Space-time indices µ, ν, · · · = 0, 1, 2, 3

• spatial indices a, b, c, · · · = 1, 2, 3

and use the einstein summation convention

3∑
µ=0

T ······
···µ···W

···µ···
······ ≡ T ······

···µ···W
···µ···

······

where the position of the spacetime indices matters!

6.1 Short review of special relativity

• Newton: Theory of mechanics: Form-invariant under Galilei-trafos

• Maxwell : Theory of electro-dynamics: Form-invariant under Poincaré-transformations

• Einstein: Relativistic mechanics: same as e-dyn.

The essence of special relativity (SR) is the Form-invariance of physics under Poincaré-trafos.
This means that there are no prefered inertial observers.
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Definition 6.1 (Coordinate changes). xµ → x′µ(x) induce changes in components of
physical quantities. One simple class are tensors

T ′µ1,···µm
ν1,···νn (x′) =

∂x′µ1

∂xα1
· · · ∂x

′µm

∂xαm

∂xβ1

∂x′ν1
· · · ∂x

βn

∂x′νn
Tα1···αm

β1···βn (x) (6.1)

Partial derivatives ∂x′

∂x
, ∂x
∂x′

are inverses, as matrices:

∂x′µ

∂xα
∂xα

∂x′ν
= δµν and

∂x′µ

∂xν
∂xβ

∂x′µ
= δβν (6.2)

Also note

∂

∂x′µ
=
∂xα

∂x′µ
∂

∂xα
(6.3)

Definition 6.2 (Poincaré trafos).

x′µ = Λµνx
ν + aµ (6.4)

with arbitrary shift aµ ∈ R4, and Λ st.

ΛµνΛ
α
βηµα = ηνβ (6.5)

where

η = diag(−1, 1, 1, 1) (6.6)

The physical interpretation of the form invariance is the change of the inertial observer.
The technical reason for the form-invariance: The geometry for the laws of nature is
provided by metric (6.6). Poincaré-trafos are precisely the coordinate transformations that
have (6.6) form-invariant (“isometries”). Trafos (6.4) form a group called Poincaré-group
P(3, 1) (actually: (matrix) Lie group). Lie algebra of P(3, 1)

p(3, 1) =
{
(ωµν , t

α) ∈ M(4× 4,R)×R4 |ωµν = −ωνµ
}

(6.7)

where

ωµνη
να =: ωµα and ωµνηµα =: ωαν with ηµν = (η−1)µν = diag(−1, 1, 1, 1)

with the Lie product between

• ω’s: matrix commutator

• t’s:
[
tα, t′β

]
= 0

• [ω, t] := ω · t ([ω, t] = t′,with t′α = ωαβ t
β and [t, ω] := −ωt)

Trafos with aµ = 0 from a subgroup, Lorentz-group O(3, 1), with Lie algebra just
consisting of the ω’s, i.e. t = 0 in (6.7).
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Relativistic mechanics

One defines the 4-velocity of a particle

uµ :=
dxµ

dτ

with τ the proper time (ie. η-length along the world line [trajectory in 4-dim space] of
the particle)

dτ

dt
=
√
1− ~v2, ~v =

d~x

dt

τ =

∫
dt

√
−ηµν

dxµ

dt

dxν

dt
+ const

(6.8)

Additionally the 4-momentum

pµ = muµ ≡ pµkin

which can be interpreted pµ = (E, ~p). Thus as uµuµ = −1, we get

m2 = E2 − ~p2 (6.9)

Hamiltonian form of particle kinematics

From the action

S = −m
∫
dτ = −m

∫
dt

√
−ηµν

dxµ

dt

dxν

dt

we can read of the Lagrangian, and then we get the Hamiltonian

H =
√
~p2 +m2

(
≈ m+

~p2

2m
for ~p2 � m2

)
Coupling to EM fields gives an additional term in the action

S = −m
∫
dτ + q

∫
dτuµAµ(x(τ))

which leads to a modified canonical momentum

pµ = pµkin + qAµ (6.10)

and the Hamiltonian

H =

√
(~p− q ~A)2 +m2 + qA0. (6.11)

This yields the EOM

dpkinµ

dτ
= qF µνuν

with the field stength tensor F of the EM field

Fµν = ∂µAν − ∂νAµ.
Equation (6.9) (“mass shell condition”) becomes

m2 = (E − qA0)2 − (~p− q ~A)2 (6.12)
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6.2 Some representations of P(3, 1) and O(3, 1)

Let φ(x) be some n-component field or wave function. Representations of P(3, 1) on
{φ(x)} given by

(Π(Λ, a)φ) (x) = Πn(Λ)φ(Λ
−1(x− a)) (6.13)

Here (Λ, a) denotes elements of P(3, 1) and Πn is an n-dim representation of O(3, 1).

Example 6.1. (4-)vecotor fields, such as Aµ(x), then n = 4, Π4(Λ) = Λ

Irreducible representations of O(3, 1)

First we choose Irr. reps. of o(3, 1) a Basis

Ma =

(
0 ~0T

~0 εa

)
, with (εa)

b
c = ε b

a c and Na =

(
0 εTa
εa 0

)
, with (εa)b = δab (6.14)

and εabc =

{
sign(P ) for (abc) = (P (1)P (2)P (3)), P a perm.

0 else

and indices of ε are raised and lowered with δ (ε b
a c := δbdεadc). Then we get

Λ(~α,~v) = 1+αaMa + vbNb +O(α2, ~v2) (6.15)

where ~α parameterises a rotation and ~v the boost velocity. We have the commutation
relation:

[Ma,Mb] = −ε c
ab Mc and [Na, Nb] = ε c

ab Mc and [Na,Mb] = −ε c
ab Nc (6.16)

this is up to a sign in [N,N ] the same structure as found in o(4) (see homework!) and as
such can do the same trick

L±
a :=

1

2
(Ma ± iNa) (6.17)

with the commutators [
L±
a , L

±
b

]
= −ε c

ab L
±
c and

[
L±
a , L

∓
b

]
= 0. (6.18)

Lemma 6.2. A,B Lie-alg., π1,H2 rep. of B, then

1. A⊕B is a Lie-alg., via [a⊕ b, c⊕ d] := [a, c]⊕ [b, a]

2. Rep. π12 on H1⊗H2 of A⊕B via π(a⊕ b) := π1(a)⊗ 1+1⊗π2(b)

which can be proofed by simple calculation.

76



Now we see o(3, 1) = su(2)⊕ su(2). Furthermore we can show, that Irreps. of o(3, 1)
are of the form π12 as above with π1, π2 irreps. of su(2). From this we conclude that
irreps of o(3, 1) can be described by a pair (j+, j−) ∈ (1

2
N0)

2, and

dim(π(j+,j−)) = (2j+ + 1)(2j− + 1).

Rewriting (6.15) in terms of L± we find

Λ(~α,~v) = 1+(~α− i~v)~L+ + (~α+ i~v)~L− + · · ·

and

π(j+,j−)(Λ(~α,~v)) = 1j+⊗j− +(~α− i~v)πj+(~L+)⊗ 1j− +(~α+ i~v)1j+ ⊗πj−(~L−) + · · · .

Coefficient of ~α is just

πj+(~L
+)⊗ 1+1⊗πj−(~L−).

This is just the tensor product rep. j+ ⊗ j− of the rotation generators. So we have

π(j+,j−)

∣∣∣∣
M

= πj+ ⊗ πj− =

j++j−⊕
k=|j+−j−|

πk

Example 6.3. 1. π 1
2
, 1
2
: 4d-rep. for the rotation subalgebra

1

2
⊗ 1

2
= 1⊕ 0

We recognise defining rep. of o(3, 1), with 0, 1 the time- and space component of a
4-vector

Aµ = (A0, ~A)

2. π( 1
2
,0) and π(0, 1

2
) two 2d-reps. where rotations act as in

1

2
⊗ 0 =

1

2
“Weyl-spinors”

3. π(0,0)1− dim.scalar

4. π( 1
2
,0) ⊕ π(0, 12) 4-dim. reducible rep. “Dirac spinor”

Remark. Representations of O(3, 1) are complicated due to

1. (6.5) allows also for reflections, in particular parity P and time reversal T . O(3, 1)
consits of 4 components

O(3, 1) = L↑
+∪̇PL

↑
+∪̇TL

↑
+∪̇PTL

↑
+ with L↑

+ =
{
Λ ∈ O(3, 1)| detΛ = 1,Λ0

0 ≥ 1
}

2. L↑
+ is not simply connected It follows that Π(j+,j−) in general only a rep. for the

covering group of L↑
+. Suitable rep. for P and T has to be found separately. (Some

more remarks on this later)
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6.3 Klein-Gordon equation

Try to guess a relativistic version of the Schrdinger equation. Starting with the simplest
idea which assumes a 1-component Wave-function: Πn = Π(0,0) in (6.13). Now use (6.12)

together with heuristics E ↔ i~ ∂
∂t
, ~p↔ −i~~∇ this suggests the Klein-Gordon equation

(�− m2

~2
)Ψ = 0 (6.19)

with

� = ηµν (∂µ + iqAµ(x)) (∂ν + iqAν(x)) (6.20)

for the wave function Ψ of a particle with mass m. Can this make sense? (in the following
~ = 1)

Non-relativistic limit

The Klein-Gordon (6.19) is second order in time. So we need to specify Ψ(t0, ~x), Ψ̇(t0, ~x)
to have a well defined evolution. How can the Schrdinger equation emerge in the
non-relativistic limit? Let Aµ = 0 and then consider

φ1 = Ψ+
i

m
Ψ̇, φ2 = Ψ− i

m
Ψ̇. (6.21)

Then using Φ =

(
φ1

φ2

)
the Klein-Gordon eq. takes the form

i
∂

∂t
Φ =

[(
1 1
−1 −1

)
∆

2m
+

(
1 0
0 −1

)
m

]
Φ (6.22)

For slow particles, first term in Hamiltonian decouples. φ1, φ2 are wave functions for two
independent particles. For higher energy, these particles interact. Analysis with Aµ 6= 0:
Particles have same mass, but opposite charge q,−q. One can interpret these as the
particle and the corresponding anti-particle.

Probability interpretation

For Schrdinger equation, had conserved prob. current

∂tρ+∇~j = 0

with ρ = |Ψ|2. (6.19) also implies a conserved current

jµ = i
(
Ψ̄∂µΨ−Ψ∂µΨ̄− 2iqAµΨ̄Ψ

)
with current conservation ∂µj

µ = 0.

The density

ρ = j0 = i
(
Ψ̄Ψ̇−Ψ ˙̄Ψ− 2iqA0Ψ̄Ψ

)
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is not positive definite. For Aµ = 0, then

ρ = 2m
(
|φ1|2 − |φ2|2

)
(6.23)

Probability interpretation can perhaps be given for low energy, but not in general. So ρ
will be interpreted as the charge density.

Negative energy solutions

(6.19) has plane wave solutions Ψ~p = e−i(Et−~p~x) with

E = ±
√
~p2 +m2 (6.24)

Remark. We can quantize the relativistic Hamiltonian (6.11) Then we get

HΨ~p = EΨ~p

So (6.24) gives energy spectrum of the KG (Klein-Gordon) particles. Support of
solutions in Fourier space:

~p

E

m

Figure 17: E(~p,m) (dashed for m = 0)

Negative mass shell is physically problematic: Upon coupling to EM field, system can
emit arbitrary amounts of energy, by populating the neq. mass shell and as such the
system is unstable. But the equation is still useful for some approximate calculation and
the occurring problems are fully resolved in QFT.

6.4 Dirac equation

Looking for relativistic covariant (forminvariant under Poincare) wave equation for spin-1
2

particles. We expect something of the form

Ψ =

Ψ1
...

ΨN

 ∈ Horbital⊗Hspin (6.25)
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which in the simplest case yields
(
1
2
, 0
)
or
(
0, 1

2

)
for Πn of (6.13). The first idea �Ψ−

m2Ψ = 0, but this would just be a couple of KG particles and as such would have the
negative energy problems.
The second idea is to try a first order equation

∂µΨ = 0.

Here we would get too many equations such that the equation is not physical. So we get
the idea to contract ∂µ over µ with something. For this we can show:

Lemma 6.4. Let

σµ := (12×2, ~σ) σ̄µ := (12×2,−~σ) (6.26)

with (~σ)a = Σa = the a Pauli matrix. Then we get

• if Ψ transforms under
(
1
2
, 0
)
⇒ σ̄µ∂µΨ transforms under

(
0, 1

2

)
• if Ψ transforms under

(
0, 1

2

)
⇒ σµ∂µΨ transforms under

(
1
2
, 0
)

Proposition 6.5.

σµ∂µΨR = 0 or σ̄µ∂µΨL = 0 (6.27)

where ΨR transform under
(
0, 1

2

)
and ΨL under

(
1
2
, 0
)
. (6.27) is called Weyl equation,

ΨR,ΨL are right-/left-handed Weyl spinors.

The mass term mΨ = m12×2Ψ transforms under same rep. as Ψ. Thus

−iσ̄µ∂µΨ+mΨ = 0

is not forminvariant under P-trafos.

Remark. (6.27) seems useless to describe electrons (because they are massive!). However
in the standard model fermions are “born” as Weyl spinors, acquire mass via Higgs
mechanism.

Now we look for other options

1.
(
1
2
, 1
2

)
: has the wrong rotation rep. 1

2
⊗ 1

2
= 1⊗ 0

2.
(
1
2
, 1
)
: has to many components (3

2
part): Rot. 1

2
⊗ 1 = 3

2
⊗ 1

2

Could one have one equation with both, ΨR,ΨL ? That corresponds to
(
1
2
, 0
)
⊕
(
0, 1

2

)
where we indeed find

−iσµ∂µΨR +mΨL = 0 − iσ̄µ∂µΨL +mΨR = 0 (6.28)

forminvariant set of 4 equations for 4 wave-functions ΨL,ΨR.
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Introduce the γ-matrices:

γµ := −i
(
02×2 σµ

σ̄µ 02×2

)
(6.29)

Then (6.28) becomes

(γµ∂µ +m)Ψ = 0 (6.30)

with Ψ(x) =

(
ΨL(x)
ΨR(x)

)
∈ C4 (6.31)

Where (6.30) is the covariant form od the Dirac equation, Ψ is called bi-spinor or Dirac
spinor. It transforms under Π4 =

(
1
2
, 0
)
⊕
(
0, 1

2

)
in (6.13). Sometimes one writes γµ∂µ = SS∂ .

Coupling to an EM-field is achieved by “minimal substitution” SS∂ → @@∇ = γµ (∂µ + iqAµ)
in (6.30). Basis change in spinor space changes form of γ-matrices. (6.29) is the chiral
form. Another useful form is the Dirac form, with γa, a = 1, 2, 3 unchanged and

γ0 = −i
(
12×2 0
0 −12×2

)
(6.32)

Clifford relations

Basis independent property that leads to correct transformation behavior is

γµγν + γνγµ = 2ηµν 14×4 (6.33)

Objects that satisfy (6.33) span the Clifford-algebra Cl(3, 1). The γ’s we found are a 4d
representation of this algebra. This generalizes to other dimensions and signatures.

Proposition 6.6. Only one irreducable rep. of (6.33) exists, up to basis changes. I.e.
for irreducable solutions γµ, γ′µ of (6.33) there is A ∈ GL(4,C) with γ′µ = AγµA−1 .

Lorentz-invariance of the Dirac equation

Consider a Poincare-trafo (Λ, aµ), i.e.

∂x′µ

∂xν
= Λµν (6.34)

We want to show

(γµ∇µ +m)Ψ = 0⇔
(
γµ∇′

µ +m
)
Ψ′ = 0 (6.35)

knowing that

∇′
µ =

(
Λ−1

)ν
µ
∇ν .

We have not yet explicitly determined Ψ′.
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Remark. For γ̂µ := (Λ−1)
µ
ν γ

ν :

γ̂µγ̂ν + γ̂ν γ̂µ =
(
Λ−1

)µ
α

(
Λ−1

)ν
β

(
γαγβ + γβγα

)
= 2

(
Λ−1

)µ
α

(
Λ−1

)ν
β
ηαβ = 2ηµν

Thus also satisfy (6.33), and are hence equivalent to the γ’s.(
Λ−1

)µ
α
γα = D(Λ)γµD(Λ)−1 (6.36)

Now, if we have

Ψ′ = D(Λ)Ψ (6.37)

then we get(
@@∇ +m

)
Ψ′ =

(
γµ
(
Λ−1

)α
µ
∇α +m

)
D(Λ)Ψ = D(Λ) (γµ∇µ +m)D(Λ)−1D(Λ)Ψ

= D(Λ) (γµ∇µ +m)Ψ

Since D(Λ) is invertible, this shows (6.35). What remains to show is that D(Λ) is(
1
2
, 0
)
⊕
(
0, 1

2

)
. Can check by direct calculation of generators.

Example 6.7. Rotations

M µ
a ν γ

ν = δµb ε
b
a cγ

c = −iδµb
(

0 ε b
a cσ

c

−ε b
a cσ

c 0

)
= −1

2
δµb

(
0 [σa, σb]

−[σa, σb] 0

)
This is the “infinitesimal version” of LHS of (6.36). If

D(Λ(~α, 0)) =

(
Π 1

2
(R(~α)) 0

0 Π 1
2
(R(~α))

)
(6.38)

then

d

dαb

∣∣∣∣
~α=0

D(Λ(~α)−1)γaD(Λ(~α)) =

[
γa,

d

dαb

∣∣∣∣
~α=0

D(Λ(~α))

]
= −1

2

[(
0 σa

−σa 0

)
,

(
σb 0
0 σb

)]
= −1

2

(
0

[
σa, σb

]
−
[
σa, σb

]
0

)
We can get compact formulars by going back to (6.7). For

Λµν = (eω)µν

with ωµν a generator (i.e. ωµν = −ωνµ) one finds

D(Λ) = e
1
2
ωµνJµν (6.39)

with

Jµν =
1

4
[γµ, γν ] (6.40)
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Remark. One can check that (6.33) generates a rep. of the Lie alg. of the invariance
group of η, no matter what dimension or signature one has.

Moreover:

[Jµν , γα] = γµηνα − γνηµα (6.41)

This is the infinitesimal version of (6.36) in general. The explicit form of generators
works out to be

Jkl = − i
2
εklm

(
σm 0
0 σm

)
Jk0 =

1

2

(
σk 0
0 −σk

)
(6.42)

Remark. • can see “block structure” of
(
1
2
, 0
)
⊕
(
0, 1

2

)
• Rotations are unitarily represented, boosts not

• (6.39) will give projective rep. of L↑
+ (Extension to O(3, 1) will maybe done later)

Adjoint and current

For spinor Ψ =

Ψ1
...
Ψ4

, define

Ψ† = (Ψ∗
1, · · · ,Ψ∗

4)

and note that

Ψ†Ψ =
4∑

k=1

|Ψk|2 ≥ 0 (6.43)

but this is not a Lorentz-scalar (but turns out to be a density):

Ψ(x)→ D(Λ)Ψ(Λ−1x), Ψ† → Ψ†(Λ−1x)D(Λ)†

and hence

Ψ′†Ψ′ = Ψ†D(Λ)†D(Λ)Ψ 6= Ψ†Ψ

But there is a workaround, we take from (6.33) for β = iγ0 (Note: β2 = 1)

βγiβ−1 = −γi, βγβ−1 = γ0

and then

βγµ†β = −γµ (6.44)
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wich finally gives

βD(Λ)†β = D(Λ−1) (6.45)

and further

βJµν†β = −Jµν

Hence we define adjoint spinor

Ψ̄ = Ψ†β (6.46)

and then Ψ̄Ψ is a Lorentz scalar and

jµ := iΨ̄γµΨ (6.47)

transforms as a 4-vector and is a conserved current.
The density of this current is

j0 = Ψ†Ψ ≥ 0.

We can deine the hilbert space

H = L(R3, d3x)⊗C4 =
4⊕

k=1

L(R3, d3x)

with inner product

〈φ|Ψ〉 :=
∫
d3x(φ†Ψ)(x) (6.48)

Observables

We get the position operator from the interpretation of Ψ†Ψ as a probability density

xi : Ψ→ xiΨ =

x
iΨ1
...

xiΨ4

 with i = 1, 2, 3 (6.49)

More observables from the generators of Poincaré-trafos: From translations we get the
(canonical) momentum, without electromagnetic fields

pa = −i14×4 ∂a (6.50)

while in the presence of electromagnetic fields we get a different kinematic momentum

~pkin =
(
−i~∇− q ~A

)
14×4
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(Here the normal (~∇)a = ∂a is meant) Rotations that do not mix components (only act
on the arguments of the wavefunction) give us the orbital angular momentum

~L = ~x× ~p

while the other rotations give us the spin. In the chiral rep. (the star above the equal
sign denotes that we are in a certain basis):

~S
∗
=

1

2

(
~σ 0
0 ~σ

)
(6.51)

Now we can see explicitly

~S2 =
1

2

(
1

2
+ 1

)
14×4

Energy can be seen as the 0-component of pµ, where

pµ = −i14×4 ∂µ.

We can give a direct expression via the Dirac equation

i∂tΨ = HΨ

for solutions Ψ, with

H = −i~α~∇+ βm, αa = iβγa (6.52)

the Dirac Hamiltonian. In the Dirac Basis it is given as

H
∗
=

(
m12×2 ~σ~p
~σ~p −m12×2

)
Plane waves

Due to (6.33) (here ∇ = ∂ ± iqA gauge invariant derivative)(
@@∇ −m

) (
@@∇ +m

)
= �A −m2 (6.53)

we have (
@@∇ +m

)
Ψ = 0⇒

(
�A −m2

)
Ψ = 0. (6.54)

Each component of Ψ fulfills the KG equation. Now for q = 0 or A = 0 we take the
ansatz

Ψ = u~ke
ikµxµ (6.55)
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where in view of (6.54), we set

k0 = ±
√
~k2 +m2. (6.56)

Now we want to choose u~k such that Ψ becomes eigenstate of H:

HΨ~k = EΨ~k

For Ψ =

(
ΨL

ΨS

)
, in the Dirac basis, this requires (L for long (slow) and S for short (fast))

EnL = muL + ~p~σuS

EnS = −muS + ~p~σuL

Combining the equations one finds (E −m)(E +m)uL = (~p~σ)2 uL and using

(~a~σ)
(
~b~σ
)
=
(
~a~b
)
12×2+i

(
~a×~b

)
~σ (6.57)

one finds

E2 −m2 = ~p2

Consistent with (6.56) and , fixing uL, we get

US =
~p~σ

E +m
uL. (6.58)

Without further conditions, so fixing ~p(= ~k), solution space is 4-dimensional (C), 2-dim.
corresponding to positive and 2-dim. to negative energy

E = ±
√
~p2 +m2

Example 6.8. ~p = 0, then for E = +m, Ψ =

(
u
0

)
e−imt. What is the meaning of u?

Remark. ~SΨ =

(
1
2
~σu
0

)
e−imt

So u is giving the spin-state of the particle at rest. Also note that for ~p = 0, E > 0
we get uS = 0. Seems to give right non-relativistic limit. More to this later. For
~p = 0, E = −m (6.58) is not useful, therefore rather fix uS and then determine uL:

uL =
~p~σ

E −m
uS = 0

and thus

Ψ =

(
0
u

)
e+imt

Apparently we have the same problem with negative energy as for KG equation.
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Dirac Hypothesis

Dirac equation describes Fermions. If all negative energy states are occupied: No decay
and no instability possible.

E

can not decay
m

0

−m

all levels occupied

Figure 18: Energy level occupation

Remark. We need to “renormalize” charges of vacuum. Additional benefit, we can
describe positron in this picure:

E

m

0

−m

Figure 19: Missing energy level

Unoccupied negative energy state

• effective charge −q

• effective positive energy

We can even describe pair creation and annihilation
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E

m

0

−m

γ

e−, e+ creation

E

m

0

−m

e−

e+

Figure 20: Electron, positron pair creation

Still the even more convincing description is in terms of quantum field theory!

Non-relativistic limit

Hamiltonian of non-rel., spin 1
2
particle in a magnetic field:

H =
~p2kin
2m
− ~B(~x) · ~M

where ~M is the magnetic dipole moment of the particle. For elementary particles:

~M = g
q

2m
~S (6.59)

where g is the gyromagnetic ratio (or g-factor).
For extended charged rotating object:

~M =

∫
~x× (~ω × ~x) ρ

2
(~x) d3x

If charge-density ρ and mass-density ρm have constant ratio, then (6.59) holds, with g
depending on ρ

ρm
, with g = 1. Measurements show that ge h 2.002, not easily explained

by the above formula. Consider the non-relativistic limit of the Dirac equation, with

A(x) = (0, ~A(x)) (Details → tutorial).
State with energy E = m+ ENR. In Dirac basis, to leading order in ENR:

ENRψL − ~σ~pkinψS = 0 (6.60)

2mψS − ~σ~pkinψL = 0 (6.61)

with ~pkin =
(
−i~∂ − q ~A(~x)

)
. (6.61) gives

ψS =
1

2m
~σ~pkinψL (6.62)
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shows that ψS is suppressed by factor pkin
2m

h
√

ENR

2m
. This relation in (6.60)(

~p2kin
2m
− 2

q

2m
~S · ~B(x)

)
ψL = ENRψL (6.63)

where we have used that:

(~σ · ~pkin)2 = ~p2kin12×2 − q~σ · ~B(x)

Comparison (6.63) with non-relativistic Hamiltonian shows and Dirac equation predicts:

ge = 2

Remark. Could have started with E = −mENR. Obtained (6.62), (6.63) with ψS ↔ ψL.
Negative energy solutions also present in non-relativistic limit.

Chiral-projector: Decomposition of Dirac spinor into Weyl spinors is manifest in chiral
gauge:

ψ =

(
ψL
ψR

)
γµ = −i

(
0 σµ

σ̄µ 0

)
it has (

γ5
)2

= 14×4 ,
{
γ5, γµ

}
= 0 (6.64)

where (
ψL
0

)
,

(
0
ψR

)
span the eigenvalues. Projector on the eigenspaces:

P± =
1

2

(
1± γ2

)
(6.65)

Basis independent det.:

γ5 = −iγ0γ1γ2γ3 (6.66)

Why the name γ5? (6.64) shows that (γµ, γ5) is a representation of Cl4+1(C). In former
times, indices run from 1, . . .
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Connection to parity: What is action of P on spinors? Have:

PΛ (~α, 0) = Λ (~α, 0)P

PΛ (0, ~v) = Λ (0,−~v)P

Which implies for the generators

P ~NP−1 = − ~N , P ~MP−1 = ~M

and hence:

PL±P−1 = L± (6.67)

Thus natural action of P on spinors:

Π(P )P±ψ(~x, t) = P±ψ(−~x, t)

Can see from considering chiral basis

Π(P ) = γ0 (6.68)

Physical Significance: Parity relation in standard model (experiments by Wu et al.).
Result from asymmetric coupling of the gauge-fields to ψL, ψR (electroweak interaction).
Sketch: Kinematic forms

ψL (SS∂ − q��A)ψL + ψR��∂ψR

6.5 Connection to QFT

Idea: KG equation.

1. Define Hilbert space by restricting to subset of wave functions.

2. Going to many particle picture (Fock space)

will get QFT. Define: For f, g solutions to KG equation

〈f, g〉KG := i

∫ (
f∂0g − f∂0g

)∣∣
t=0

d3x

Look at:

e±~k =
1

(2π)
3
2

1√
2ω~k

e±iω~kt+i
~k~x

Restrict to solution such that 〈·, ·〉KG positive

h =
{
f = f̃(~k~e+k ), 〈f, f〉KG <∞

}
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Many particles:

H = fS(h)

Many particle Hamiltonian:

H = dΓ(h) , h =
√
~p2 +m2

Annihilation and creation operators: For e+~k “basis”[
a~k, a

†
~k′

]
= δ(3)

(
~k − ~k′

)
Then:

H =

∫
d3k

√
~k2 +m2a†~ka~k

positive spectrum.

a(~x, t) =

∫
d3k

〈
~x
∣∣∣e+~k 〉︸ ︷︷ ︸

e+
~k
(x)

a~k(x)

(
�−m2

)
a = 0

Define Φ(x) = a(x) + a†(x) Can obtain Φ from quantifying field theory with action

S =

∫
d4x

1

2

[
∂µφ∂µφ+m2φ2

]
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