Neutrino-Astromony

Lecture by Thomas Eberl Scriptum by Philipp Weber

December 12, 2018

This document uses TikZ-Feynman (arXiv:1601.05437)

Contents

1	Neutrino oscillations		
	1.1	Neutrino flavor states	•
	1.2	Neutrino mixing	,
	1.3	Neutrino transformations	,
	1.4	Neutrino oscillation phenomenology	2
	1.5	Mixing Matrix	ļ
	1.6	Mass eigenstates	;

1 Neutrino oscillations

1.1 Neutrino flavor states

"Neutrino with a given flavor" identifies the neutral particle associated by weak interactions to the charged lepton with a given flavor, i.e. electron, muon or tau. EG ν_e in $e^- + {}^{37}Ar \rightarrow \nu_e + {}^{32}Cl$.

From observation: Flavor is conserved in the interaction point. Similar def. holds true for antineutrinos. Assumption (consistent with all known facts): Weak interactions are describe by a realtivistic qft. High energy: Standard electroweak model: (based $SU(3) \times SU(2) \times U(1)$). Assumption: Neutrino masses play a negligible role in interactions, i.e. ultra-relativistic limit $E_{\nu} \gg m_{\nu}$ holds.

1.2 Neutrino mixing

Assumption: Quantized neutrino fields with given flavor ν_{α} od not coincide with quantized field that have a given, defined mass, but rather coincide with linear combinations of fields ν_i that have mass m_i .

$$\nu_{\alpha} = \sum_{i=1}^{N} U_{\alpha i} \nu_{i} \text{ with } \alpha = e, \mu, \tau ; \ i = 1, 2, 3$$
(1.1)

- ν_{α} do not have, in general, a definite mass.
- $U_{\alpha i}$ elements of a "leptonic mixing matrix"
- $U_{\alpha i}$ elements of a unitary 3x3 matrix (assumption!)

Consistent with:

- 1. Measured with Z^0 bosons
- 2. Neutrinos with given flavor have the same interactions they are universal
- 3. Cosmological observations

Currently not observed:

- 1. More than 3 neutrinos, would violate unitarity
- 2. non-universal behaviour \rightarrow no additional interactions

1.3 Neutrino transformations

Oscillating transformations $\nu_{\alpha} \rightarrow \nu_{\beta}(\alpha, \beta = e, \mu, \tau)$ in which one neutrino type transforms into another one with a different lepton flavor number: $L_{\alpha} \neq L_{\beta}$.

Necessary conditions:

- 1. Not all neutrinos have identical mass in particular not all neutrinos are massless
- 2. Lepton flavor numbers are not strictly conserved

Caveat: In SM neutrinos are assumed to be massless and L_{α} are conserved.

1.4 Neutrino oscillation phenomenology

Consider: *n* orthonormal eigenstates $|\nu_{\alpha}\rangle$:

$$\begin{aligned} \langle \nu_{\alpha} | \nu_{\beta} \rangle &= \delta_{\alpha,\beta} \\ \langle \nu_i | \nu_j \rangle &= \delta_{ij} \end{aligned}$$

$$|
u_{lpha}
angle = \sum_{i} U_{lpha i} |
u_{i}
angle$$

$$|\nu_i\rangle = \sum_{\alpha} \left(U^{\dagger}\right)_{i\alpha} |\nu_{\alpha}\rangle$$
$$= \sum_{\alpha} U^*_{\alpha i} |\nu_{\alpha}\rangle$$

With unitarity:

$$U^{\dagger}U = 1$$
$$U^{-1} = U^{\dagger} = (U^{*})^{\mathrm{T}}$$
i.e.
$$\sum_{i} U_{\alpha i} U_{\beta i}^{*} = \delta_{\alpha \beta}$$
$$\sum_{\alpha} U_{\alpha i} U_{\alpha j}^{*} = \delta_{i j}$$
$$|\overline{\nu_{\alpha}}\rangle = \sum_{i} U_{\alpha i}^{*} |\overline{\nu_{i}}\rangle : \text{ antineutrinos}$$

 \rightarrow Different from $|\nu_{\alpha}\rangle$ if U_i is real

 \rightarrow State defined in the ultrarelativistic limit are well-defined ($\lambda=-1$ for antineutrino) coinciding with chirality.

- Lowest-energy neutrinos detected today $\sim 200 \,\mathrm{keV}$
- Conservative boundaries on neutrino mass: $\ll 2 \,\mathrm{eV}$ \rightarrow Deviation from ultrarelativistic limit $\epsilon < 10^{-5}$

Breakdown?

- Near the endpoint of the β -spectrum: To conserve energy only ν_1 can be emitted with e^-
- Neutrinos produced in Big Bang now have momenta $p \sim kT \simeq 0.2 \text{ meV}$ From $\sqrt{|\Delta m_{13}^2|} \simeq 50 \text{ meV}$ and $\sqrt{\Delta m_{12}^2} = 8.6 \text{ meV}$

1.5 Mixing Matrix

- Number of parameters of a unitary $n \times n$ matrix: n^2
- 2n neutrino states
 - $\rightarrow 2n-1$ relative phases between states:
 - $\rightarrow (n-1)^2$ independent parameters to describe phases

Example 1.1. 6 neutrinos, 5 relative phases, 4 parameter to fix 5 phases

Convention:

- $\frac{1}{2}n(n-1)$ "weak mixing angles" of an *n*-dimensional rotation matrix
- $\frac{1}{2}(n-1)(n-2)$ "CP-violating phases"

Remark. If neutrinos are majorana particles (i.e. their own antiparticles) 2 additional phases α_1 and α_2 occur. These cannot be observed in oscillation phenomena.

1.6 Mass eigenstates

Flavor eigenstates have no sharp, well-defined mass in general, i.e.

$$\langle \nu_{\alpha} | M | \nu_{\beta} \rangle \neq 0$$

But

$$\langle \nu_i | M | \nu_j \rangle = m_i \delta_{ij}$$
 and $m_i - m_j \neq 0 \ \forall i, j : i \neq j$

 $|\nu_i\rangle$ is a stationary state with time dependency:

$$|\nu_i(x,t)\rangle = \left|\nu_i(0,0)e^{-ipx}\right\rangle$$
$$= \left|\nu_i(x,t)\right\rangle = \left|\nu_i(0,0)e^{-i(E\cdot t - \vec{px})}\right\rangle$$

with $E = \hbar \omega$ and $\vec{p} = \hbar \vec{k} = \hbar \frac{2\pi}{\lambda} \vec{e_k}$. Probability amplitudes propagate wave-like in space and time. Particle:

$$t = 0; x = 0: \nu_1(0, 0)$$

at
$$x = L : |\nu_1(L, t)\rangle = \left|\nu_1(0, 0)e^{-i(E_1 \cdot t - p_1 L)}\right\rangle$$

Consider: 2 particles with mass m_1 and m_2 and the same energy E start to propagate in phase at x = 0 and t = 0 into the same direction. Phases at x = L:

$$\begin{aligned} |\nu_1(L,t)\rangle &= \left|\nu_1(0,0)e^{-i(E\cdot t - p_1L)}\right\rangle = \left|\nu_1(0,0)e^{-i\phi_1}\right\rangle \\ \nu_2(L,t) &= \left|\nu_2(0,0)e^{-i(E\cdot t - p_2L)}\right\rangle \\ &= \left|\nu_2(0,0)e^{-i(Ecdott - p_1L(p_1 - p_2)L)}\right\rangle \\ &= \left|\nu_2(0,0)e^{-i\phi_1}e^{-i(p_1 - p_2)L}\right\rangle \end{aligned}$$

For $E \gg m$:

$$p_1 - p_2 = \sqrt{E^2 - m_1^2} - \sqrt{E^2 - m_2^2}$$
$$\simeq \left(E - \frac{m_1^2}{2E}\right) - \left(E - \frac{m_2^2}{2E}\right) = \frac{m_2^2 m_1^2}{2E} = \frac{\Delta m^2}{2E}$$
$$|\nu_2(L, t)\rangle = \left|\nu_2(0, 0)e^{-ip_1}e^{i\frac{L\Delta m^2}{2E}}\right\rangle$$
$$\Delta = \frac{L}{2E}\Delta m^2$$

Time evolution of an eigenstate

$$\left|\nu_{i}(t)\right\rangle = e^{-iE_{i}t}\left|\nu_{i}\right\rangle$$

(Assumptions: $E_i \in \mathbb{R}$ and suppressing x-dependency)

$$E_i = \sqrt{p^2 + m_i^2} \simeq p + \frac{m_i^2}{2p} \simeq E + \frac{m_i^2}{2E}$$

for $p \gg m$ with $E \simeq p$ the neutrino energy. Pure flavor state ν_{α} at t = 0 evolves into $\nu(t)$:

$$|\nu(t)\rangle = \sum_{i=1}^{3} U_{\alpha i} |\nu_i\rangle e^{iE_i t} = \sum_{i,\beta} U_{\alpha i} U^*_{\beta i} e^{-iE_i t} \vec{\nu\beta}$$

Time-dependent transition amplitude for flavor transition $\nu_{\alpha} \rightarrow \nu_{\beta}$:

$$A\left(\alpha \to \beta; t\right) = \left\langle \nu_{\beta} \middle|_{\nu_{\alpha}(0 \to t)} \right\rangle = \sum_{i} U_{\alpha i} U_{\beta i}^{*} e^{-iE_{i}t} = \left(UDU^{\dagger}\right)_{\alpha\beta}$$

with $D_{ij} = \delta_{ij} e^{-iE_i t}$ a diagonal matrix.

$$A(\alpha \to \beta; t) = \sum_{i} U_{\alpha i} U_{\beta i}^* e^{-i\frac{m_i^2}{2} \cdot \frac{L}{E}} = A(\alpha \to \beta; L) \text{ with } L = c \cdot t$$

the distance between ν_{α} source and detector where ν_{β} is observed.

Remark. Phase-factor $e^{-iE \cdot t}$ cancels with e^{ipx} because of $E \simeq p$ and x = t as neutrino propagate with close to the speed of light.

$$A(\overline{\alpha} \to \overline{\beta}, t) = \sum_{i} U_{\alpha i}^* U_{\beta i} e^{-iE_i t}$$